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Towards a new approach to reveal dynamical
organization of the brain using topological data
analysis
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Little is known about how our brains dynamically adapt for efficient functioning. Most pre-

vious work has focused on analyzing changes in co-fluctuations between a set of brain

regions over several temporal segments of the data. We argue that by collapsing data in

space or time, we stand to lose useful information about the brain’s dynamical organization.

Here we use Topological Data Analysis to reveal the overall organization of whole-brain

activity maps at a single-participant level—as an interactive representation—without

arbitrarily collapsing data in space or time. Using existing multitask fMRI datasets, with the

known ground truth about the timing of transitions from one task-block to next, our approach

tracks both within- and between-task transitions at a much faster time scale (~4–9 s) than

before. The individual differences in the revealed dynamical organization predict task

performance. In summary, our approach distills complex brain dynamics into interactive and

behaviorally relevant representations.
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Understanding how our brain dynamically adapts from one
task to the next is vital for comprehending typical and
atypical brain functioning. With the advent of modern

neuroimaging modalities, sophisticated attempts have been made
to employ time-evolving estimates of inter-regional functional
connectivity (FC), during both at rest1 and evoked2,3 experi-
mental paradigms, to study how the brain functionally reconfi-
gures at the scale of seconds to minutes4. Most existing analytical
methods collapse data both in space and time at the onset of the
analysis1,3, thereby decreasing the spatiotemporal scale of the data
beyond that set during acquisition, and likely hindering our
ability to extract fine-grained information on brain dynamics and
transitions.

Different techniques have been proposed to empirically char-
acterize FC over the entire scan time (typically 6–10 min)5–7.
Using such methods on “resting” data (i.e., in the absence of
externally demanding tasks), we have learned that the intrinsic
brain activity is organized into several major systems that were
previously apparent only during task-induced paradigms8,9.
However, collapsing FC over the entire scan time neglects the
variation in spatiotemporal properties of the neural processes of
interest10,11. In fact, recent studies show that within-participant
properties of FC can vary considerably within the confines of
individual scans (on a timescale of several seconds)10. These
temporal variations have been observed in humans12–15 and
other species16,17. Concurrent neuroimaging studies, involving
functional magnetic resonance imaging (fMRI) and electro-
physiological recordings, have suggested that the origin of tem-
poral variations is neurophysiological4,14,18, and that such
variations contain clinically relevant information19. Thus, our
current understanding of the brain functioning based on “aver-
age” FC, and the accompanying inferences, is at best, incomplete.

To analyze time-varying FC (a.k.a. dynamical FC or dFC),
methods based on sliding-window13,16,20, single-volume co-acti-
vation patterns21, wavelets13, change-point detection22, decon-
volution23, multiplication of temporal derivatives4,24, and
temporal Independent Component Analysis12 have been pro-
posed. While these novel methods provide valuable insights,
several fundamental issues remain unresolved, including (1)
uncovering the temporal and spatial scales that best capture
clinically and behaviorally relevant brain dynamics; (2) under-
standing whether the dynamical landscape of possible config-
urations is best conceptualized as continuous or discrete1; and (3)
recognizing what constitutes healthy and aberrant dynamics.
Tackling these issues requires novel tools that avoid arbitrarily
collapsing data in time and space early in the analysis, provide
interpretable visualizations of how the brain traverses its dyna-
mical landscape—namely data-driven abstractions that attempt to
capture the stream of thought originally proposed by William
James (Chapter IX)25—and permit quantification of these
dynamic trajectories in behaviorally and clinically relevant ways
that allow comparisons across conditions, participants, and
populations.

Here, we present such a novel method to represent brain’s
overall dynamical organization as a combinatorial object (or
graph), without arbitrarily collapsing data in space or time. The
proposed representations can be interactively visualized, quanti-
fied in a variety of ways using graph theory, and constructed at
the level of individual participants, making them suitable for
exploratory research and translational purposes. To achieve this
goal, we employed and extended a tool from the field of Topo-
logical Data Analysis (TDA) called Mapper26,27. The intuition
behind Mapper is to reduce a high-dimensional data set into a
combinatorial object (see Supplementary Fig. 1). Such an object
attempts to encapsulate the original shape, or the topological and
geometric information, of the data by representing similar points

nearby than dissimilar points. Intuitively, such a representation is
analogous to generating a topographical map that can capture the
essential features of a landscape. Although TDA-based Mapper is
in principle similar to other traditional manifold learning (or
non-linear dimensionality reduction) algorithms (e.g., ISO-
MAP28), it provides several advantages over them. For example,
unlike manifold learning, Mapper makes fewer assumptions
about the underlying data. Further, unlike other methods, Map-
per represents the underlying landscape as a graph, which is
robust to noise and its properties can be easily estimated for
better quantification. Additionally, the coordinate and deforma-
tion invariance properties of Mapper make it suitable for exam-
ining data across participants and projects29,30. The TDA-based
Mapper has been previously applied to reveal the shape of genetic
data in breast-cancer patients31, neuronal data from the visual
cortex32, biomolecular folding pathways33, voting behavior in the
U.S. House of Representatives29, and anatomical data in patients
with fragile X syndrome30.

We tested the efficacy of our approach in an fMRI dataset with
known ground truth about the timing of transitions between
mental states as dictated by tasks34. This dataset, originally
acquired to evaluate the behavioral significance of FC states20,
consists of ~25 min continuous scanning sessions, during which
participants performed multiple tasks (two sets of working
memory, arithmetic operations, and a visuospatial search task)
along with resting for short blocks of time (~3 min), to simulate
ongoing cognition. Since the transitions between different cog-
nitive processes were experimentally constrained, as opposed to
self-directed transitions during rest, the paradigm provides
ground truth regarding the timing and nature of cognitive states
and their transition34. We hypothesized that our approach would
(1) provide novel insights about how the brain dynamically
adapts in a multitask paradigm at the level of single individual; (2)
capture dynamical transitions in neural processes at higher
temporal resolution than before; and (3) provide neural markers
for individual differences in task performance.

We performed rigorous reliability and validation analysis for
the proposed approach, including comparison with three
different null models, replicating our results in an independent
dataset from the Human Connectome Project35, and a thorough
parameter perturbation analysis. To derive novel biological
insights about brain functioning and its dynamics, we also
provide methods to quantify and visualize the generated
representation and anchor the representation and its features into
neurophysiology by revealing pseudo-instantaneous whole-brain
activation patterns.

Using multiple fMRI datasets, our approach tracks both
within- and between-task transitions at a much faster time scale
(~4–9 s) than before. Further, the individual differences in the
organization of whole-brain activity maps predict task perfor-
mance. Altogether, we provide a novel method to distill complex
brain dynamics associated with ongoing cognition into a set of
interactive and behaviorally relevant representations by taking
full advantage of the original temporal and spatial scales of the
data.

Results
Revealing dynamical organization of the brain. To test the
efficacy of our approach in estimating a representation of
the brain’s dynamical organization and in capturing transitions in
the whole-brain activity, we employed already collected fMRI
data from Gonzalez-Castillo et al.34. These data were collected
while participants performed in a Continuous Multitask Para-
digm (CMP) with experimentally constrained transitions from
one task to the next.
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After standard fMRI preprocessing, each participant’s 4D fMRI
data were first transformed into a matrix, such that the rows
corresponded to the individual time frames (or volumes) and the
columns corresponded to the intensity value at each voxel. Thus,
each row of this matrix represents the entire brain volume at any
time point during the session (Fig. 1a). The TDA-based Mapper is
next employed on this matrix to perform four steps—filtering,
binning, partial clustering, and finally constructing the shape graph
(Fig. 1b−e). Although data-driven optimization was employed to
find the best set of parameters for each of the Mapper steps, we
observed that the presented results are stable in the face of
extensive parameter perturbations (see Reliability of shape graphs).

As a first Mapper step, we applied a filtering (or dimensionality
reduction). This step is similar to the standard dimensionality
reduction techniques used in the machine learning literature.
However, unlike traditional linear dimensionality reduction
techniques, like principal component analysis (PCA) or
multi-dimensional scaling (MDS), we employed a nonlinear
dimensionality reduction method using a variant of stochastic
neighborhood estimation (SNE36,37). Nonlinear methods like
SNE allows for preservation of the local structure in the original
high-dimensional space after projection into the low-dimensional
space, which is typically not possible with linear methods like
PCA or MDS36. Thus, the time frames with similar activation
patterns in the original high-dimensional space will be projected
closer to each other in the reduced dimensional space (Fig. 1b).

To encapsulate the low-dimensional representation generated
by the filtering step, Mapper employs binning (or partitioning)
(Fig. 1c), followed by partial clustering within each bin. The
binning step partitions the low-dimensional space into over-
lapping bins by using two parameters—number of bins (or
resolution (R)) and percentage of overlap between bins (or gain
(G)). Within each bin, single-linkage clustering is performed to
condense the time frames into a set of one or more clusters
(Fig. 1d). This step results in a compressed representation, as
fewer points (or clusters) are now required to represent the data
as compared to the entire set of time frames. On average, for each
participant, the compressed representation contained ~279 points
(SD= 60) (as opposed to 1017 acquired time frames).
It is important to note that this clustering step is different
from traditional temporal smoothing as the time frames
within each cluster are not averaged and the mapping between
individual clusters and their corresponding time frames is
preserved.

Finally, to generate a combinatorial object or shape graph from
the low-dimensional compressed representation, the Mapper
treats each cluster as a node in the graph and connects these
nodes with an edge if they share time frames (Fig. 1e). The final
shape graph can be conceptualized as a low-dimensional
depiction of how the brain dynamically evolved across different
functional configurations during the scan. While the actual
interpretation of the latent variables associated with the projected
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Fig. 1 Application of Mapper to 4D fMRI data. a Pre-processed four-dimensional fMRI data from each participant was fed into the analysis. For each
participant, the entire data matrix (i.e., #TRs × #Voxels) was used for analysis. b Non-linear dimensionality reduction was done during the filtering step to
project fMRI data into a lower two-dimension set (represented by dimensions (f, g)). c Two-dimensional binning was then performed by dividing the lower-
dimension space into smaller bins (determined by the resolution parameter, R) with certain overlap (determined by the gain parameter, G). d Partial
clustering was then performed to get a compressed representation by collapsing data into fewer nodes, where each node represents a cluster, and the size
of each node depicts the number of data points inside each cluster. e After clustering, nodes that share data points (i.e., time frames in this case) are linked
together with an edge to create the final compressed combinatorial representation (or graph)
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low-dimensional space may differ across participants, the
topological relationships encoded by the shape graph itself are
interpretable and comparable across participants (as we shall
discuss later).

To reveal the underlying temporal structure in the CMP
dataset, the aforementioned Mapper approach was applied to
each participant in the CMP dataset. For qualitative analysis, we
annotated the nodes in these shape graphs with colors based on
the corresponding task at each time frame (Fig. 2a). Further, if a
node contained time frames from multiple tasks, we visualized
that node using a pie chart denoting the proportion of time
frames that belong to each task within such node (Fig. 2b). Graph
theoretical metrics were next used to quantify the topological
properties of each participant’s shape graph.

Quantifying the mesoscale structure of shape graphs. Graph
theory (or Network Science) is currently widely used in the field
of neuroscience to provide summary statistics of the complex
interactions between different entities or nodes. While interesting
insights can be captured by analyzing properties of each node or
edge in the network (i.e., at the local scale) or by analyzing the
network as whole (i.e., at the global scale), the intermediate (or
mesoscale) properties appear particularly well suited for analyzing
and comparing the structure of complex networks38,39. In parti-
cular, considerable effort has gone into identifying two distinct
types of mesoscale structures in a variety of complex networks.
The first and perhaps the most widely used mesoscale structure is
the community structure, where cohesive groups called commu-
nities consist of nodes that are densely connected to other nodes
within communities while being only sparsely connected to nodes
between communities40. In the context of shape graphs, the
presence of communities could represent a modular organization
with specialized whole-brain functional configurations for dif-
ferent types of information processing (or tasks). An increasingly
second most typical mesoscale structure is the core−periphery

structure41. Here, one attempts to determine the core nodes,
which are not only densely connected to each other but are also
central to the entire network. A presence of core nodes in shape
graphs could indicate whole-brain functional configurations that
consistently occur throughout the scan. For example, core nodes
could represent neural processes related to task-switching that the
brain consistently passes through during a multitask experimental
paradigm. The peripheral nodes on the other hand are only
sparsely connected. The examination of the core–periphery
structure of a graph could reveal the overall arrangement of the
network39. It is important to note that in the real world, networks
can have both communities and core−periphery structures and
hence it is desirable to investigate both simultaneously.

To exemplify how topological properties of shape graphs can
provide behaviorally relevant information at the single-
participant level, we estimated both community and core
−periphery mesoscale structures. Briefly, to estimate the degree
or quality of the community structure in shape graphs, we
assessed the widely used quality function Qmod

42. The community
assignment for each node in a shape graph was chosen to be one
of the four tasks (i.e., Rest, Memory, Video, and Math) based on
the majority of time frames contained in the node that belonged
to the respective task. Across the CMP dataset, we observed
participants’ shape graphs with varying degree of modularity
(ranging from Qmod= 0.37 to 0.61 with a mean= 0.48 and SD=
0.07; Fig. 3a). Remarkably, the degree of modularity was observed
to be associated with task performance across the three CMP
tasks (%correct r= 0.56, p= 0.016; Fig. 3b), such that high
modularity was associated with better performance on the CMP
tasks. Thus, highlighting that participants with a higher degree of
community structure in their shape graph better performed
across different cognitive tasks during the CMP. In other words,
participants with specialized whole-brain configurations for
different tasks were those with the highest overall task
performance. We examined this claim using an independent
validation analysis (see Anchoring topology of shape graphs into

a b

Instructions
Resting state
Working memory
Video
Math

Task-fMRI dataset from
one CMP participant S01

Time (3D volume every 1.5 s)

Fig. 2 Revealing the shape of brain’s dynamical organization. a Depicts the shape graph for one of the representative participants (S01) from the CMP
dataset. The shape graph was annotated using colors and pie-chart visualization scheme to depict how the tasks were represented in each shape graph. b
Shows a zoomed-in version of the densely connected region of the shape graph to show the use of pie-chart visualization
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anatomy). Please note that because the quantification of
community structure was done on the shape graph as a whole
(i.e., across tasks), we combined task performance measures
across the working memory, video and math tasks.

To quantify the core−periphery structure in each participant’s
shape graph, we employed the generalized Borgatti and Everett41

algorithm that provides a coreness score (CS) for each node. This
algorithm assigns CS along a continuous spectrum with nodes
that lie most deeply in a network core with a CS ~1 to those that
are in the periphery with a CS ~039. Figure 4a presents shape
graphs annotated (or colored) by the task type as well as CS for
two representative participants. Remarkably, across all partici-
pants, the nodes containing resting state time frames were mostly
represented in the peripheries (mean CSRest [SD]= 0.15 [0.06]),
while the nodes containing time frames from cognitively
demanding tasks mainly lied relatively deeper inside the shape
graph (mean CSW.M. [SD]= 0.28 [0.04]; mean CSMath [SD]=
0.30 [0.04]; and mean CSVideo [SD]= 0.22 [0.06]). One-way
ANOVA revealed a significant effect of the task (F(3,51)= 24.06,
p < 0.0001), such that CSRest was observed to be significantly
lower than the CS of other three tasks, while coreness scores for
the working memory and math tasks were similar but higher than
that of the video task. This result indicates more consistency in
the whole-brain functional configurations was present during
math and memory task as compared to the less demanding
resting state.

To test the validity of the observed non-trivial arrangement of
resting state nodes in the peripheries while the cognitively
demanding nodes in the core, we employed three different null
models. Overall, the CS of nodes with resting time frames was
observed to be lower than all the three corresponding null models
(ps < 0.001), while the CS of nodes with working memory or math
frames was higher than all the three corresponding null models
(ps < 0.005). No significant difference was observed for the CS of
nodes with time frames from the video task and the correspond-
ing null models (Fig. 4b).

Anchoring topology of shape graphs in anatomy. To ground the
shape graphs and their properties into neurophysiology, we
provide three approaches that attempt to reveal the underlying
patterns of brain activity putatively responsible for the observed
topological features. In the first approach, we use spatial mixture
modeling (SMM)43 to reveal changes in brain activation maps
from one time frame to the next. The SMM approach includes
fitting a mixture of distributions and using a spatial Markov
random field to regularize the labeling of voxels into null, acti-
vated or deactivated. Thus, for each node in the shape graph and
the containing time frames, we generated whole-brain activation
(and deactivation) maps. To interactively examine the temporal
variations in these activation maps, we developed a web-tool
(Supplementary Figs. 2−3 and Supplementary Movie 1). The
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web-tool allows for a better interpretation of the shape graph and
its topological properties (i.e., edges and nodes). For example, in
real time, a user can move the Time-Frame slider (across time
frames) to simultaneously highlight respective nodes in the shape
graph; see transitions in corresponding whole-brain activation
maps; and observe correlations of the activation maps with
known large-scale brain networks9 (Supplementary Movie 1).
Thus, allowing an inspection of neurophysiology at the whole-
brain level and the highest temporal resolution (limited only by
acquisition rate). When using this tool on the CMP dataset, we
can observe how nodes associated with the memory task corre-
spond to whole-brain activation maps with significant activity in
the dorsolateral prefrontal cortex, and visual cortex; while for the
math task we see the engagement of parietal regions previously
associated with arithmetic processing (Supplementary Fig. 4).
These results validate the cognitive relevance of the activity maps
generated from the shape graphs as they identify regions com-
monly activated by these tasks.

In the second approach, to anchor the overall topological
properties of the shape graph into neurophysiology, we utilized
the traditional group-based generalized linear model (GLM)
analysis. Specifically, we examined the neurophysiological basis
for the observed non-trivial mesoscale structure of
core–periphery in the shape graphs. For this analysis, the
coreness score of each node was mapped back to the individual
time frames contained in that node. Thus, if a node has a CS of
0.5, then the time frames contained in that node also received a
CS of 0.5. Using multiple regression, the CS for each time frame
was entered for each task creating four explanatory variables. Two
contrasts were run to examine brain regions that show positive as
well as negative association with the coreness scores. The cluster-
corrected (Z > 2.3 and FWER p < 0.05) group-level results are
shown in Fig. 4c and Supplementary Table 1. For the positive
association contrast, during the working memory task, higher
coreness scores were associated with increased engagement of the
bilateral dorsolateral prefrontal cortex (DLPFC), bilateral insula
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and lateral occipital cortex, and paracingulate gyrus. Higher
coreness scores during the math task were associated with
increased engagement of the R. angular gyrus, inferior parietal
sulcus areas and the paracingulate gyrus. Lastly, for the video
task, higher coreness scores were positively associated with
activation in the bilateral fusiform gyrus and right frontal pole.
Qualitatively, the brain regions associated positively with coreness
scores largely overlapped with regions previously shown to be
recruited for the respective tasks (Fig. 4c). This qualitative

assessment was performed by overlaying the observed results on
the meta-analysis maps generated by NeuroSynth.org44 for each
task term (i.e., “working memory,” “arithmetic,” and “object
recognition,” respectively). For the negative association contrast,
across all three tasks, significant clusters were observed in the
posterior cingulate cortex (PCC) and medial prefrontal cortex
(Supplementary Fig. 5), suggesting nodes with lower coreness
scores (i.e., periphery nodes) were associated with increased
activation in the PCC irrespective of the task type. No significant
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Fig. 5 Capturing temporal transitions at the level individual time frames. a Shows a temporal connectivity matrix (TCM) for participant S01 from the CMP
dataset. A TCM (size: #time frames × #time frames) shows how each time frame is connected (or similar) to all other time frames. The time frames are
connected (i.e. non-zero value in the TCM) if they share a node in the shape graph or if the nodes containing these time frames are connected by an edge
in the shape graph. We have manually highlighted the task blocks on the TCM to show the task-related modular structure. b Shows that the degree of TCM
nodes can capture the transition between tasks. Here we show average degree across all 18 participants as a solid-line, shaded region shows the standard
error around the mean. The dotted lines denote detected change points, which mark the transitions for the eight task blocks. c Shows the effectiveness of
capturing temporal transitions extracted from the CMP data as compared to transitions extracted from the phase-randomization null model. The blue
dashed line denotes onset of task block and the blue dotted line indicates offset of task block. As compared to the null model data (denoted using
diamonds), a time frame by time frame analysis revealed that the degree of TCM generated using real data (denoted using + signs) could capture both the
onset and offset of each task within a matter of a few time frames. The red inverted triangles on top denote point-by-point significant difference between
transitions from real as compared to null data
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cluster was observed for positive or negative association with
coreness scores in the resting state task. Overall, these results
suggest that core nodes in the shape graph represent task-related
activation and putatively associated cognitive effort, whereas
sparsely and peripherally connected nodes in the shape graph
represent task-unrelated activation presumably related to task-
negative default mode regions.

Lastly, an independent whole-brain FC analysis was run to
validate the TDA-derived finding that individuals with higher
task performance putatively evoked task-specific brain configura-
tions as compared to individuals with lower task performance.
Two groups were formed using a median split based on the
overall task performance (low (n= 9) and high performers (n=
9) with a median split at 86.9% accuracy). The whole-brain FC
was estimated by sampling data from a set of 264 brain regions to
make inferences at the regional and systems level (Supplementary
Fig. 12). We used an independent and well-established brain
parcellation scheme that was previously identified using a
combination of resting-state FC parcellation as well as task
neuroimaging meta-analysis45. The FC between each pair of brain
regions was estimated using Pearson correlations (r), and was
converted using Fisher’s z-transform for further analysis. After
estimating whole-brain FC matrices for each task-block, we
calculated the similarity between FC matrices derived from
different task blocks within each participant. To perform a group-
level comparison, the average similarity between FC matrices
across tasks, for each participant, was estimated and a two-sample
ttest was run to compare the low-performance group from the
high-performance group. A significant t-statistic (t(16)= 2.50, p
= 0.0236) was observed, such that participants in the low-
performance group (compared to the high-performance group)
had higher average similarity between FC matrices across tasks
(Supplementary Fig. 12B–C). Thus, validating the TDA-derived
prediction that participants who performed better across tasks
evoked task-specific brain configurations.

Capturing temporal transitions in brain dynamics. To estimate
the temporal transitions in the whole-brain activity maps, we
converted the TDA-generated shape graph into an adjacency
matrix in the temporal domain (i.e., a temporal connectivity
matrix (TCM)). It is important to note that a TCM is repre-
senting similarity (or connectivity) in time and not in space like
the standard FC matrices that represent anatomical region-by-
region connectivity. Here, the time frames are considered con-
nected if they share a node or if the nodes containing these time
frames are connected by an edge in the shape graph. As evident
from Fig. 5a, for a representative participant, the TCM was
observed to be modularly organized, with densely connected
frames within each task block and across blocks of the same task.

Remarkably, by directly estimating the degree (or the total
number of connections) at each time frame in the TCM, we could
capture the transitions between and within task types at the level
of a few time frames. Inherently, a higher degree at any time
frame implies greater similarity of that frame with other frames.
Thus, during the task blocks, other than resting state block, the
evoked activity associated with the stimuli/task would cause the
time frames to be highly coherent or similar within each block
and across the repetition of the same task (and hence more
connected in the TCM), thereby leading to a higher degree value.
During the resting state blocks (as well as during between-task
instruction periods) the brain activation patterns were driven by
intrinsic (and not evoked) activity, which would lead to less
coherent or dissimilar patterns and hence a lower degree value.
Thus, a task-switch from an evoked task to an instruction period
or vice versa would lead to a change in degree values at the level

of a few time frames (Fig. 5b, c). As shown in Fig. 5b, the average
normalized degree of TCM reveals the between task transitions.
Using a standard change point detection algorithm46, we were
able to retrieve eight transitions in the mean normalized degree,
corresponding to the eight task blocks. Additionally, for each task
type, we quantified how quickly the degree of TCM can capture
both onsets and offsets of each task block. As compared to the
null model generated using a phase randomization technique (see
Validation of the shape graphs against null models), a time frame
by time frame analysis revealed that the degree of TCM generated
using real data could capture both the onset and offset of tasks
within a matter of a few time frames (Fig. 5c).

Similar to the coreness score analysis, a one-way ANOVA
revealed a significant effect of the task for the degree at each time
frame in the TCM (F(4,68)= 104.27, p < 0.0001). The working
memory task had the highest degree (mean dWM

TCM=0.71 [0.11]),
followed by math (mean dMath

TCM=0.60 [0.13]), then video (mean
dVideoTCM =0.31 [0.17]) and lastly, resting state (mean dRestTCM=0.15
[0.06]).

Reliability of shape graphs. We performed three reliability
analyses. First, for each participant, we split the data into two
halves and ran our approach on each half independently. We
hypothesized that if our approach is reliable, we should observe
similar shape graphs and their properties for the two halves. As
hypothesized, the independently generated shape graphs for both
halves had similar mesoscale structural as well as temporal
properties as observed with the full dataset. In the shape graph
from each half of the data, we found: (1) high modularity asso-
ciated with better performance across tasks; (2) core−periphery
structure, such that coreness scores for resting state was lower
than cognitively demanding tasks; and (3) between-task temporal
transitions at the level of few time frames (Supplementary Fig. 6).
These findings suggest that our approach is replicable even when
only a part of the data is used to estimate shape graphs.

As a second attempt to estimate reliability, we replicated our
approach on an entirely different dataset with distinctive data
acquisition parameters, preprocessing steps and experimental
design. We used fMRI dataset from 38 unrelated participants
from the Human Connectome Project (HCP)34 who performed a
working memory task. The working memory task consisted of
two runs (~5 min each) and three conditions (2-back, 0-back, and
fixation). As compared to the CMP dataset, the HCP dataset had
only one task for each session. Thus, instead of examining
dynamical organization across tasks, we examined the organiza-
tion within a single task (but across conditions). Using similar
Mapper parameters as used in the CMP dataset, the shape graphs
generated from the HCP data also contained: (1) a hybrid
mesoscale structures of modularity as well as core/periphery; (2) a
similar pattern of significantly less coreness scores for fixation (or
resting) nodes as compared to cognitively demanding working
memory nodes; and (3) temporal transitions extracted from TCM
showing “within-task” transitions from one condition to the next
(Supplementary Fig. 7).

As a third measure towards estimating the reliability of our
approach, we tested the effect of parameter perturbation on shape
properties and their relation to behavioral task performance. We
varied both the TDA parameters—i.e., number of bins (or
resolution, R) and percentage of overlap between bins (or gain, G)
—to generate 49 different variations. Results are shown in
Supplementary Fig. 8. Overall, the shape properties (e.g., the core-
periphery structure) were reliably observed in a majority of
parameter variations. Further, the association between modularity
and task performance (in the CMP data) was also reliably
significant across a majority of parameter variations. Altogether
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indicating robustness of results in the face of parameter
perturbation.

Validation of the shape graphs against null models. To
benchmark and validate the results generated from our approach,
we employed three different null models. The first null model was
designed to test whether the metrics generated from our approach
(including the shape graph) were mainly driven by non-brain
physiological signals (e.g., cardiac and respiratory) and spatio-
temporal noise. In addition to these primary sources of noise, the
individual variations in neuroanatomy were also included in the
model, by using each anatomical scan (T1-weighted scan) for
defining the baseline. The second and third null models were
designed to test whether the task-unrelated non-stationarity pri-
marily drove the shape graph and its properties. To generate last
two null models, phase randomization (with and without con-
stant phase sequence) of the original dataset was performed
independently for each individual. After applying our approach to
the data generated from these null models, we did not observe: (1)
core−periphery or modularity characteristics in any of the null
models, (2) task-dependent variation in the coreness scores, and
(3) any structure in the temporal transitions across tasks (Sup-
plementary Fig. 9).

In addition to these null models, we also tested whether head
movement artifacts were responsible for individual differences in
the TDA-generated shape graphs. No correlation was observed
between the shape-graph properties (e.g., coreness score) and
measures of head movement artifacts (e.g., mean relative and max
absolute head displacement; all ps > 0.05).

Discussion
How our brain dynamically adapts to perform different tasks is
vital to understanding the neural basis of cognition. Moreover,
the brain’s inability to dynamically adjust to environmental
demands and brain’s aberrant dynamics, on average, have been
previously associated with disorders such as schizophrenia19,
bipolar disorder47, depression48, and dementia49. The high spa-
tiotemporal dimensionality and complexity of neuroimaging data
make the study of whole-brain dynamics a challenging endeavor.
Researchers and clinicians alike demand novel methods aimed to
distill such complex data into simple—yet vibrant and behavio-
rally relevant—representations that can be interactively explored
to discover new aspects of the data. Ideally, such representations
could also be quantified to allow statistical inferences and provide
the basis of future biomarkers for mental disorders. With these
goals in sight, and while addressing several methodological gaps,
we present a novel approach using TDA to examine the overall
temporal arrangement of whole-brain activation maps. Without
arbitrarily collapsing data in space or time, our TDA-based
approach generates graphical representations of how the brain
navigates through different functional configurations during a
scanning session—i.e., a data-driven representation of the stream
of mind that unfolds as participants lie in the scanner. These
representations, when computed on a continuous multitask
dataset, revealed the temporal arrangement of whole-brain acti-
vation maps as a hybrid of two mesoscale structures, i.e., com-
munity and core−periphery organization. Remarkably, the
community structure was found to be essential for the overall task
performance, while the core−periphery arrangement revealed
that brain activity patterns during evoked tasks were aggregated
as a core while patterns during resting state were located in the
periphery. Neurophysiologically, the core represented task-
specific (task-positive) brain activations, while the periphery
represented task-unrelated (task-negative) activations. This neu-
rophysiological insight indicates higher similarity of whole-brain

activation patterns when participants are actively engaged in
cognitively demanding tasks compared to when allowed to freely
mind-wander during rest periods, which is a well-established
hallmark of brain dynamics21,50. Lastly, by projecting shape
graphs into the time domain, we were able to pinpoint between-
as well as within-task transitions at the temporal resolution of a
few time frames.

To fully appreciate the potential of our approach, it is impor-
tant to compare it with previously devised methods for studying
brain dynamics. As adequately stated by Preti et al.1, the currently
used methods fall primarily into two categories: those that con-
ceptualize spontaneous brain activity as having a slow, yet con-
tinuously evolving, temporal dynamic; and others that suggest
that all relevant information can be condensed into a sparse set of
short events. As a method that relies on the whole-brain multi-
variate patterns of BOLD signal intensity as its input, our method
lies conceptually closer to those methods that explore brain
dynamics on the basis of sparse events (e.g., CAPs21, paradigm
free mapping23, point process analysis14) rather than those that
rely on the estimation of inter-regional (or inter-voxel) co-
fluctuations over time (e.g., sliding window Pearson’s correla-
tion10, dynamical conditional correlation51, multiplication of
temporal derivatives52). At the same time, our method also dis-
tinguishes itself from the category of exploring dynamics based
on sparse events, because shape graphs do not necessarily assume
that brain dynamics arise from only a subset of significant events
but permits exploration of the continuous unfolding of dynamics
across each time frame. Further, unlike most previous approaches
for studying brain dynamics, we do not require estimation of
correlation (or connectivity) between parcellated brain regions
and instead use whole-brain voxel-level activation maps to reveal
the overall shape of brain dynamics. Taken together, our method
may provide a bridge to gap the conceptual differences between
the two prominent approaches for fMRI brain dynamics, or even
provide a novel avenue to explore how to conceptualize brain
dynamics best.

Using task-based fMRI data, our method could reveal transi-
tions in whole-brain activity patterns at a temporal scale that is
perhaps hitting the lower limit of the hemodynamics, due to the
inherent delay in the hemodynamic response. Examination of
brain dynamics in fMRI data at such a fine temporal resolution is
currently not possible with sliding window-based methods. It can
be argued that our method could be used in the future to better
merge complementary neuroimaging modalities (e.g., electro-
encephalogram and fMRI recordings) for examination of brain
dynamics at the highest possible spatiotemporal resolution. Fur-
ther, by generating a representation of how the brain navigates
through different functional configurations (or brain activation
maps) at the level of individual time frames, our approach pro-
vides a handle representing the stream of mind that unfolds as the
participant lies (or performs) in the MR scanner. We argue that
this level of detailed representation of transitions in brain con-
figurations makes our approach potentially useful in studying
brain dynamics in general and developing biomarkers in mental
illnesses in particular.

Our approach also provided novel biological insights, which
were later validated using additional fMRI analysis. For example,
participants with a cohesive community structure in their shape
graph showed higher performance across different tasks. High
modularity suggests that nodes are more likely to be connected to
other nodes containing the same task type as compared to other
task types. Thus, suggesting that participants who performed
better across tasks had reliably evoked whole-brain configurations
that were specific to each task, whereas participants who per-
formed poorly had evoked whole-brain configurations that were
more similar between (rather than within) task types. We tested

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03664-4 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1399 | DOI: 10.1038/s41467-018-03664-4 |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


this insight by dividing the data into high- versus low-
performance groups and analyzing similarity between whole-
brain FC configurations across tasks blocks. As predicted, the
participants in the high-performance group (compared to the
low-performance group) had significantly lower similarity
between FC configurations derived from different task blocks.

Another biological insight provided by our approach was
related to the presence of both community and core–periphery
mesoscale arrangements at the level of whole-brain activity maps.
We also assessed the neurophysiological basis of such mesoscale
arrangements. To compare and analyze different complex net-
works, estimation of these mesoscale structures is increasingly
preferred as it can provide information regarding the overall
architectural arrangement of a network39. In neuroscience, both
of these mesoscale structures have recently been used to char-
acterize how sets of brain regions segregate and integrate during
complex cognitive processing. Using non-overlapping sliding
windows of 2–3 min, Bassett and colleagues estimated the tem-
poral variability in the region-by-region community structure
during a motor learning task38. During this motor learning
paradigm, brain regions were identified as part of a core if their
community assignment did not change over time. The regions
that were identified as part of the core included motor-related
(left-lateralized primary sensorimotor) and visual processing
brain areas, thus, suggesting that the core regions were primarily
related to the task (i.e., motor learning) itself. Although our
characterization of mesoscale properties aims to characterize the
overall arrangement of brain activity patterns and not how
individual brain regions interact with each other, it is nonetheless
noteworthy to find similarity with previous work regarding the
neurophysiological basis of high coreness, which we also observed
to be engagement of task-related brain regions.

Using a multitask paradigm we aimed at capturing the overall
dynamical arrangement that could represent how task-specific
brain configurations interact with configurations that are shared
between tasks. The three cognitive tasks used in the paradigm—
working memory, math, and video—are known to elicit relatively
distinct evoked brain activation patterns; however, these tasks
also share several key low-level visuospatial and motor processing
functions. Additionally, transitioning from one task to the next
requires a common cognitive construct of task switching, which
plays a significant role in rapidly reconfiguring brain networks so
that humans can efficiently implement a variety of tasks one after
another53,54. Thus, using our approach we aimed to capture this
interplay between task-specific, low-level processing, as well as
switching-specific brain activation patterns. The clinical evidence
suggests that disturbances in such interplay are linked to psy-
chiatric disorders55,56. In the future, approaches like ours that
provide a unique avenue to quantify this interplay at the level of
single participants could be used for translational outcomes.

Future research should evaluate whether the topological char-
acteristics of shape graphs—namely community and core−per-
iphery structures—could also capture clinically relevant markers.
For example, depression is typically characterized by frequent
rumination on negative self-referential thoughts and hypercon-
nectivity of the default mode network57. We hypothesize that
such excessively long and frequent rumination periods will pro-
duce shape graphs with significantly larger cores for depressed
patients compared to healthy controls.

Here, for validation purposes, we used fMRI data collected
from task-based experimental paradigms where transitions
between tasks were experimentally constrained. However, in the
future, we plan to test our method’s utility in revealing similar
transitions in intrinsic (or at rest) data and relating topological
properties of shape graphs extracted from those resting data to
clinical and behavioral markers. Another avenue for future

research could be to gain mechanistic insights into how the
brain’s dynamical landscape (and associated temporal transitions)
is altered by changes in internal brain state, external modulation
(e.g., neuromodulation), as well as clinical conditions.

Methodologically, future work is needed to reduce the required
computational resources of our approach, e.g., for real-time
applications like neurofeedback. A potential way to better utilize
computational resources and improve the speed of processing is
to perhaps use gray-matter voxels only or coarse-grained spatial
resolution as an alternative to individual voxels (e.g., about 90K
grayordinates58 versus ~300K voxels). Lastly, here, we focused on
the two most common mesoscale architectures to characterize
shape graphs. However, in the future, other graph-theoretical
measures (e.g., rich clubs, assortativity or betweenness centrality)
could also be explored to better relate individual differences in
shape graphs with behavioral and clinical markers.

Looking forward, it can be argued that some brain disorders
might be better characterized by aberrant transitions between
different cognitive processes. For example, rapid transitions
between cognitive processes may characterize attention disorders,
while fixed states may indicate internal rumination, typical of
depressive disorders. For a successful translational application of
capturing and quantifying brain dynamics, it is important to
develop methods that have single-participant specificity, are
robust for a variety of acquisition paradigms, and are reliable in
the face of partial data or parameter perturbations. Thus, meth-
ods that are robust in capturing and quantifying transitions
across mental processes may be a promising addition to devel-
oping novel diagnostics.

Methods
Dataset 1: continuous multitask paradigm. In this paper, we used two already
collected fMRI datasets. The first dataset was originally collected by Gonzalez-
Castillo et al.34 using a CMP. We gathered these data from the XNAT Central
public repository (https://central.xnat.org; Project ID: FCStateClassif). Informed
consent was obtained from all subjects. The local Institutional Review Board of the
National Institute of Mental Health in Bethesda, MD reviewed and approved the
CMP data collection. Stanford University Institutional Review Board (IRB)
reviewed and approved the use of these data in the current study. Brief details
about these data and preprocessing steps are provided below.

This dataset contained de-identified fMRI and behavioral data from 18
participants who completed the CMP experiments as part of the study34. Details
about the experimental paradigm are presented elsewhere34. Briefly, during the
CMP task, participants were scanned continuously for a 25 min and 24 s long
session, while performing four different tasks. Each task was presented for two
separate 3 min blocks, with each task block being preceded by a 12-s instruction
period. The order of task blocks was randomized such that each task was always
preceded and followed by a different task. Once randomized, the experimental
design was kept same for all participants. The four tasks included in this paradigm
were: (1) Rest, where participants were instructed to look at the + sign on the
screen and let their mind wander; (2) Math, where participants were presented with
simple arithmetic operations, involving three numbers between 1 and 10 and two
operands (only addition and subtraction). Operations remained on the screen for 4
s, and a blank screen appeared for 1 s between successive trials. This timing resulted
in a total of 36 operations per each 3-min block; (3) Working Memory, where
participants were presented with a continuous sequence of individual geometric
shapes (appeared every 3 s) and were instructed to press a button whenever the
shape currently on the screen was the same as two shapes before in the sequence
(2-back design); and (4) Video, where participants watched a video of a fish tank
from a single stationary point of view with different types of fish swimming in and
out. Participants were instructed to look for a red-crosshair and signal by pressing a
button whether the crosshair appeared on a clown fish or any other type of fish.
These targets appeared for 200 ms with a total of 16 targets during each of the 3-
min blocks.

The fMRI data were acquired on a Siemens 7 Tesla MRI scanner equipped with
a 32-element receive coil (Nova Medical). Functional runs were obtained using a
gradient recalled, single shot, echo planar imaging (gre-EPI) sequence {repetition
time [TR]= 1.5 s, echo time [TE]= 25 ms, and voxel size= isotropic 2 mm}. A
total of 1017 time frames were acquired in each session.

The behavioral data included responses and reaction times for the math,
working memory, and video tasks. Participants were instructed to respond as
quickly and accurately as possible with only one response per question. For each of
the three tasks (math, memory, and video), percent correct, percent missed, and
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reaction times were calculated. Both average and individual trial data were made
available in the XNAT Central repository34.

We performed standard fMRI preprocessing steps using the Configurable
Pipeline for the Analysis of Connectomes (C-PAC version 0.3.4; http://fcp-indi.
github.io/docs/user/index.html). Individual functional and anatomical MR images
were transformed to a common 152 brain template that is maintained by the
Montreal Neurological Institute (MNI59). We used the Advanced Normalization
Tool (ANTS) for registering images, as it has been shown to outperform other
methods60. Registration involves a three-step process—(1) individual participant’s
anatomical images are first transformed to match the common template; followed
by (2) registering individual participant’s functional data to own transformed
anatomical image, and finally, (3) functional derivative files are transformed to the
common template. The fMRI data preprocessing included slice timing correction,
motion correction (using FSL MCFLIRT tool), skull stripping (using FSL BET
tool), grand mean scaling, spatial smoothing (FWHM of 4 mm) and temporal
band-pass filter (0.009 Hz < f < 0.08 Hz). Additionally, nuisance signal correction
was done on the data by regressing out (1) linear and quadratic trends; (2) mean
time-series from the white matter (WM) and the cerebrospinal fluid (CSF); (3) 24
motion parameters obtained by motion correction (the six motion parameters of
the current volume and the preceding volume, plus each of these values squared.);
and (4) signals extracted using the CompCor algorithm61. We used five
components for CompCor-based nuisance regression. To extract mean time-series
from the WM, gray matter, and CSF the anatomical MR data were automatically
segmented using FMRIB’s Automated Segmentation Tool (FSL FAST tool). As the
last step, these data were brought to 3 mm MNI space and normalized (demeaned
with unit variance) before running the Mapper.

Dataset 2: HCP working-memory paradigm. The second dataset was originally
collected as part of the Human Connectome Project (HCP35) while participants
performed working-memory tasks. We gathered these data from the HCP website
(https://db.humanconnectome.org). Informed consent was obtained from all sub-
jects. The HCP scanning protocol was approved by the local Institutional Review
Board at Washington University in St. Louis. Stanford University Institutional
Review Board (IRB) reviewed and approved the use of these data in the current
study. Brief details about these data and preprocessing steps are provided below.

De-identified data were downloaded from the subset of 40 unrelated
participants, while they performed the working memory task35,62. This subset
includes data from 38 individuals (21 F; age range= 22–35 years). Details of the
experiment are presented elsewhere35. Briefly, the N-back working memory
paradigm was employed using two 5-min runs. Within each run, four different
stimulus types (faces, places, tools, and body parts) are presented in separate
blocks, for a total of eight blocks (two per stimulus type). Out of the eight blocks,
four blocks use a two-back working memory task (i.e., respond target whenever the
current stimulus is the same as the one two-back) and the other four blocks use a 0-
back working memory task (i.e., a target cue is presented at the start of each block,
and the person must respond target to any presentation of that stimulus during the
block). A 2.5 s cue indicates the task type (and target for 0-back) at the start of the
block. In addition to eight working memory blocks, each run also includes four
fixations (or resting state) blocks. The duration of each working memory block was
set to 25 s, while the duration for resting state blocks was set to 15 s each.

The fMRI data were acquired using whole-brain EPI sequences, with a 32-
channel head coil on a modified 3 T Siemens Skyra. The acquisition parameters
included were as follows: TR= 720 ms, TE= 33.1 ms, Voxel size= 2.0 mm
isotropic. A multi-band acceleration factor of 8 was used to increase temporal
resolution. Two runs of working memory experiment were acquired, one with a
right-to-left and the other with a left-to-right phase encoding.

The behavioral data included both responses and reaction times for the working
memory task. Participants were instructed to respond as quickly and accurately as
possible with only one response per question. Individual trial data were gathered
from the Human Connectome Project database.

We downloaded minimally preprocessed data from the Human Connectome
Project database. Details about this minimal processing are provided elsewhere62.
Briefly, the preprocessing steps included gradient unwarping, motion correction,
fieldmap-based EPI distortion correction, brain-boundary-based registration of EPI
to structural T1-weighted scan, non-linear (FNIRT) registration into
MNI152 space, and grand-mean intensity normalization. Additionally, nuisance
signal correction was done on the data by regressing out 12 motion parameters
obtained by motion correction (the six motion parameters of the current volume
and the preceding volume). Lastly, these data were brought to 3 mm MNI space,
band-passed (0.009–0.08 Hz), normalized (demeaned with unit variance) and
spatially smoothed (4 mm) before running Mapper.

TDA-based Mapper analysis pipeline. Although the details about the TDA-based
Mapper approach are presented elsewhere26,27,29, we provide a brief summary for
each of the five Mapper steps. As a first Mapper step, without collapsing data in
space or time, for each individual, preprocessed 4D fMRI data were transformed
into a 2D matrix. The rows of this 2D matrix represented time frames whereas the
columns represented voxels. For the CMP data, the size of each individual’s 2D
input matrix was [1017 × 271,633]. Similarly, for the HCP data, the size was [405 ×
271,633].

As a second Mapper step, filtering was used for dimensionality reduction. A
variety of filters can be used for this step, namely, geometric filters (e.g., distance-
based density, measures of centrality, etc.) or non-geometric filters (e.g., derived
from PCA or projection pursuit analysis). We used the Neighborhood Lens63

function to project the high-dimensional data (in 271,633 dimensions) to two
dimensions. This function is a nonlinear dimensionality reduction method that
uses a variant of SNE (t-SNE36,37). Nonlinear methods like t-SNE allows for
preservation of the “local” structure in the original high-dimensional space after
projection into the low-dimensional space, which is typically not possible with
linear methods like PCA or MDS36.

As a third Mapper step, the filter range was divided into overlapping bins. The
number of bins and amount of overlap is determined by resolution parameter (R)
and gain parameter (G), respectively. For the CMP fMRI data, these parameters
were selected as part of the data-driven automated approach (see Data-driven
parameter search). This approach selected RCMP= 30 and GCMP= 3. Please also
see the Parameter perturbation analysis section, where we showed the reliability of
our results under a variety of different parameter values. For the replication HCP
fMRI data, the filter function set and binning parameters were kept the same as
that of CMP (with the only exception of resolution parameter (R), which was
proportionally modified to match the higher sampling rate of the HCP data, i.e.,
instead of using RCMP= 30, we used RHCP ¼ RCMP ´ ðTRHCP=TRCMPÞ � 14).

As a fourth step, partial clustering is performed, within each bin, to reduce the
complexity of the shape graph. The resulting clusters from this step later become
nodes in the shape graph. The Mapper algorithm is not tied to any particular
clustering approach. Here we used the single-linkage clustering algorithm, as it
does not require specifying the number of clusters beforehand. Further, previous
applications of Mapper to a variety of datasets have successfully used this
approach29. The distance metric for single-linkage clustering could be chosen to be
Euclidean or correlation or any other similarity function. We used the data-driven
approach to find the best distance metric, which turned out to be Manhattan L1.

Finally, as a fifth step, a combinatorial object or shape graph was generated
from the low-dimensional compressed representation. The Mapper treats each
cluster as a node in the graph and connects these nodes with an edge if they share
one or more time frames.

Visualization of shape graphs. The shape graphs were annotated (or colored) by
task type. The nodes with time frames from multiple tasks were visualized using
pie-charts to appropriately depict the proportion of time frames from each task. A
web-based interface was also developed to interact with the shape graph (Sup-
plementary Fig. 2). This implementation was developed using HTML5, Scalable
Vector Graphics (SVG), CSS, and JavaScript. Specifically, we used the D3.js fra-
mework (Data-driven documentation; D3) for displaying individual participants’
shape graphs and the associated spatial profiles (generated from the mixture
modeling at each time frame). The interface also displays spatial correlation with
known large-scale brain networks in real time.

The node annotation (color and pie charts) can be changed in real time to
display other pieces of information. For example, by clicking Hit/Miss button in the
web tool, the nodes can display the proportion of hit (or correct response) versus
miss (or incorrect response) trials (Supplementary Fig. 3). Such information can be
used in future to mine information about trial-to-trial variation in each participant.

Lastly, the tool allows for generating temporal movies to review how spatial
topographies (and associated spatial correlation with large-scale brain networks)
changes in time as the participant transitions from one task to the next.
Supplementary Movie 1 provides an example for such temporal animations for one
of the representative participants (S01).

Quantifying mesoscale structure of shape graphs. To quantify the community
structure in a shape graph, we estimated the widely used quality function Qmod

64.
Mathematically, for a given graph G, with N nodes and a set of edges E connecting
those nodes, Qmod can be defined as follows:

Qmod ¼
X

i;jf g
Aij � Pij
� �

δðgi; gjÞ;

where A is the adjacency matrix, with Aij as cell elements containing the weight of
connection between nodes i and j. For a hard partition (i.e., where each node is
assigned to exactly one community) and where gk denotes the community for node
k, the function δ(gi,gj)= 1 if gi= gj and equals to 0 otherwise. Pij denotes expected
connection strength between nodes i and j, under a specified null model. One of the
most common null model64 is given by,

Pij ¼
kikj
2m

;

where ki is the strength of node i, kj is the strength of node j, andm ¼ 1
2

P
ij Aij . The

community assignment for each node in shape graph was chosen to be one of the
four tasks (i.e., Rest, Working Memory, Video, and Math) based on the majority of
time frames belonging to any one task.

To quantify the core−periphery structure in each participant’s shape graph, we
employed the generalized Borgatti and Everett41 algorithm that provides a coreness
score (CS) for each node along a continuous spectrum between nodes that lie most
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deeply in a network core with a CS ~ 1 and those that are in the periphery with a
CS ~ 038. We used the implementation by Rombach et al.39 to estimate CS, which
was designed for undirected networks. This method takes into account cores of
different shapes and sizes by giving credit to all nodes and by weighting the credit
using a quality function R(α,β), defined below,

Rðα;βÞ ¼
X

ij

AijCij;

where (α,β) are the two parameters of this approach, such that β sets the size of the
core and α sets the boundary between core and periphery. A large value of α
indicates sharp transition. The symbol A denotes the adjacency matrix, with Aij as
cell elements containing the weight of connection between nodes i and j. The
elements Cij of the core matrix are given by Cij= CiCj, and Ci � 0 is the local core
value of node i. The local core values of node i, Ci, is estimated by maximizing Rα,β
using Simulated Annealing (as implemented in Matlab®). The aggregate of coreness
score of each node i is,

CS ið Þ ¼ Z
X

ðα;βÞ
Ci α; βð Þ ´Rðα; βÞ;

where Z is a normalization factor such that the CS(i) normalizes to a maximum
value of 1. As there is no a priori on how to choose (α,β) values, we sampled α and
β uniformly over a discretization of the square [0,1]×[0,1] and reported the
averaged CS(i) for each node i. This uniform sampling approach to choose (α,β)
has been prescribed previously39.

Extracting temporal transitions. To quantify temporal transitions associated with
the task-related brain activity, we simply estimated the degree of nodes in the TCM.
The degree for each node (or time frame) in the TCM was estimated by counting
the number of non-zero edges connected to that time frame.

Data-driven parameter search. To find the best set of TDA-based Mapper
parameters (e.g., Gain and Resolution parameter), we used the data-driven out-
come-auto analysis feature, as implemented in the software API63. In this analysis,
the parameter search for TDA-based Mapper approach is done to optimize loca-
lization of a given feature in the shape graph. For example, given a sample dataset
containing a part of the observations from male participants and the other part of
female participants, the outcome-auto analysis could then be used to find TDA
parameters that best localizes data from the same sex participants nearby in the
shape graph. In our case, using outcome-auto analysis, we optimized TDA para-
meters to localize the task type (i.e., rest, working memory, etc.). This optimization
was done only for the CMP dataset. To test the reliability of these parameters, we
later successfully used the set of parameters optimized on the CMP data for the
replication HCP data.

The details regarding this optimization are presented elsewhere63. Briefly, the
algorithm uses a two-pass approach—where it first searches for the set of filter
functions and distance metric that best localizes some outcome measure (here we
used task type as an outcome measure) and in the second pass, for a given set of
filter functions and distance metric, the algorithm searches for a set of binning
parameters that best localize the outcome measure on the shape graph. Table 1
provides the final parameters.

Parameter perturbation analysis. Although a data-driven approach was used to
objectively find parameter values for generating shape graphs, as an additional
measure towards estimating the reliability of shape graphs, we tested the effect of
parameter perturbation on shape properties and their relation to behavioral task
performance. For the perturbation analysis, we widely varied the two main TDA
binning parameters—i.e., the number of bins (or resolution, R) and percentage of
overlap between bins (or gain, G)—to generate 49 different variations of the shape
graph for each CMP participant. These two binning parameters largely control the
overall arrangement of shape graph. Thus, to test whether the shape graph prop-
erties (e.g., core−periphery arrangement) is robust in the face of perturbing bin-
ning parameters, we varied R from 10 to 70 (steps of 10) while G was varied from 2
to 5 (steps of 0.5). Results are shown in Supplementary Figs. 8 and 10. Overall the
shape properties (e.g., the core−periphery structure) were reliably observed in a
majority of parameter variations. Further, the association between modularity and

task performance was also significant and reliable across a majority of parameter
variations.

Traditional GLM analysis. The aim of these analyses was to reveal brain regions
that were positively (or negatively) associated with CS and hence provide neuro-
physiological basis for the core (or periphery) nodes in the shape graph. A weighted
GLM analysis was performed. First, the coreness score of each node was mapped
back to the time frames contained in that node. Thus, if a node has a CS of 0.5,
then the corresponding time frames contained in that node also got a proportional
weighting of 0.5 in the GLM analysis. Using a multiple regression analysis,
weighted time frames were entered for each task separately creating four expla-
natory variables. Two contrasts were run to examine brain regions that show
positive as well as negative association with the coreness scores. We qualitatively
compared the cluster-corrected (Z > 2.3 and FWER p < 0.05) group-level results
with task-specific meta-analysis statistical maps derived from the NeuroSynth
library44.

Whole-brain functional connectivity configurations. To examine whether the
high-performance group elicited task-specific brain configurations, we estimated
whole-brain FC configurations during each task block for each participant. To
estimate these brain configurations—first, data were sampled from a set of 264
brain regions to make inferences at the regional and systems level (Supplementary
Fig. 12A). We used an independent and well-established brain parcellation scheme
that was previously identified using a combination of resting-state FC parcellation
as well as task neuroimaging meta-analysis45. Data were summarized for each
region by averaging signal in all voxels falling inside a sphere (radius= 5 mm)
centered at the coordinates provided by Power et al.45. The FC between each pair of
brain regions was estimated using Pearson correlations (r). These correlation values
were converted to Fisher’s z-transform for further analysis. After estimating task-
based FC matrices, we calculated similarity between FC matrices across different
task blocks within each participant. For a quantitative group-level comparison, the
average similarity between FC matrices for each participant was estimated (average
over upper triangle of the participant’s similarity matrix) and a two-sample ttest
was run to compare the low-performance group from the high-performance group.

Null model generated using neuRosim. To benchmark and validate the results
generated from our approach, we employed three different null models. The first
null model was designed to test whether the metrics generated from our approach,
including the shape graph and its characteristics, are mainly driven by physiolo-
gical signals (e.g., cardiac and respiratory) and spatiotemporal noise. In addition to
these main sources of noise, the individual variations in neuroanatomy were also
included in the model, by using each individual’s anatomical scan (T1-weighted
scan) as a baseline. The 4D fMRI null datasets were simulated using an R-package
(neuRosim65). To better model the spatiotemporal properties of real 4D fMRI data,
the null model includes four different noise sources: (a) white system noise
(“rician” noise); (b) physiological noise (1.17 Hz for heart beat and 0.2 Hz for
respiratory rate); (c) temporal noise (using auto-regressive modeling with model
order chosen using the AIC); and (d) spatial noise (using Gaussian Random Field
with FWHM= 4 mm). Lastly, each of the noise parameters was modeled inde-
pendently for the gray matter, WM, and CSF. These null models were generated for
each individual. The autocorrelation function (ACF) of null data were observed to
follow the ACF of real data very closely (see Supplementary Fig. 11).

Null model generated using phase-randomization. The second and third null
models were designed to test whether the metrics and shape graph generated by
our approach is mainly driven by task-unrelated non-stationarity in the real data.
To generate these null models, phase randomization of the original dataset was
done independently for each individual. Phase randomization involves rando-
mizing the observed time series by performing Fourier transform, scrambling the
phase and then inverting the transform to get the null model66. The autocorrelation
function, power spectrum, and other linear properties are preserved under phase
randomization67; also see Supplementary Fig. 11. Further, the two variants in the
phase randomization procedure include scrambling the phase using the same
sequence across all time-series versus scrambling the phase using a random
sequence for each time-series. The former approach preserves covariance structure
in the data while randomizing nonlinear properties in the data. However, the latter
also disrupts linear relationships in the data. We used both of these approaches
here to test the validity of our methods. Matlab scripts were used to generate phase
randomization-based simulations.

Code availability. To generate shape graphs, we used a licensed version of TDA
software through the Ayasdi cloud-based platform (www.ayasdi.com). Open source
versions of the TDA code are also available in Python (http://danifold.net/mapper/
introduction.html) and R (https://cran.rproject.org/web/packages/TDA/index.
html). To visualize data, an in-house web-based interface was developed. Matlab
scripts were written to analyze the shape graphs; this code is available from the
authors upon reasonable request.

Table 1 TDA parameters revealed by a data-driven approach
applied on the CMP dataset

TDA parameter Value is chosen based on outcome-auto
analysis

Distance metric Manhattan (L1)
Filter function set Neighborhood Lens 1 and 2
Resolution parameter 30
Gain parameter 3
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Data availability. The CMP data used in this work were originally collected by
Gonzalez-Castillo et al.34. We gathered these data from the XNAT Central public
repository (https://central.xnat.org; Project ID: FCStateClassif). The second dataset
was originally collected as part of the Human Connectome Project (HCP35) while
participants performed working-memory tasks. We gathered these data from the
HCP website (https://db.humanconnectome.org).
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