
Understanding how brain function emerges from pat-
terns of communication between large numbers of neu-
ronal elements stands as one of the enduring challenges 
of modern neuroscience1–3. Like many complex systems, 
the brain exhibits a very wide range of dynamic activity 
and connectivity patterns that are thought to be instru-
mental for enabling the integration and processing of 
information in the course of behaviour and cognition. 
Although much work has addressed the complex organ-
ization of the structural and functional networks of the 
brain4–8, how this complexity supports communication 
processes that are fundamental to the brain’s compu-
tational capacities remains poorly understood. In this 
article, we survey recent work on brain networks that 
illuminates the network basis of neuronal information 
processing and computation.

The complex systems approach to understanding 
the brain is akin to approaches in other disciplines that 
blend concepts from network science, statistical phys-
ics and dynamical systems to study social networks, the  
spread of epidemics, rumours or computer viruses,  
the effects of perturbations or attacks on electric grids 
or the World Wide Web, or the functioning of gene reg-
ulatory or metabolic networks9,10. These approaches all 
model a complex real-world system as a collection of 
elements that are linked by pairwise (dyadic) connec-
tions. The elements (or nodes) generally exhibit simple 
local properties and the connections (or edges) represent 
the relationships between these elements (for example, 
they may mediate the flow of energy or information,  

the transmission of a virus, the physical binding between 
biomolecules or the conversion of such molecules in 
chemical pathways). Importantly, the topology of con-
nectivity powerfully shapes the patterns of interaction 
and the communication between the elements of a sys-
tem, which in turn govern its global behaviour. These 
patterns unfold dynamically across time in response to 
endogenous or exogenous perturbations. We define the 
complete set of spatiotemporal patterns of network com-
munication that a given system exhibits or supports as 
the ‘communication dynamics’ of the system.

Communication is particularly relevant for networks 
that are specialized to transmit or distribute informa-
tion in a coordinated manner. In the context of brain 
networks, which can be estimated from both anatom-
ical and physiological data, two parallel theoretical 
approaches have crystallized to advance our understand-
ing of communication11–13. First, graph theory has been 
instrumental for characterizing topological organiza-
tion and for making inferences about information flow 
through a network. Within this framework, the nature of 
graph-based inference (or prediction) of communication 
patterns strongly depends on how elementary commu-
nication events are conceptualized and formally defined. 
Second, models and simulations of dynamical systems 
generate communication events that temporally evolve 
on top of a structural graph. Essentially, this approach 
captures the interdependencies between anatomical 
structure (topology) and communication dynamics as 
they unfold on the network. The nature of the dynamics 
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Abstract | Neuronal signalling and communication underpin virtually all aspects of brain activity 
and function. Network science approaches to modelling and analysing the dynamics of 
communication on networks have proved useful for simulating functional brain connectivity and 
predicting emergent network states. This Review surveys important aspects of communication 
dynamics in brain networks. We begin by sketching a conceptual framework that views 
communication dynamics as a necessary link between the empirical domains of structural and 
functional connectivity. We then consider how different local and global topological attributes of 
structural networks support potential patterns of network communication, and how the 
interactions between network topology and dynamic models can provide additional insights and 
constraints. We end by proposing that communication dynamics may act as potential generative 
models of effective connectivity and can offer insight into the mechanisms by which brain 
networks transform and process information.
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Random walk
A stochastic process that 
describes a succession of 
random steps taken on a 
network.

Network topology
The patterns of connectivity of 
a network.

Neural elements
Unit elements of a neural 
network. The unit is defined by 
the spatial scale. Neural 
elements can represent, for 
example, a single synapse, a 
neuron, a neuronal population 
or an entire brain region.

Adjacency matrix
A mathematical representation 
of a network as a matrix. 
Elements of the matrix indicate 
whether two nodes are 
connected or not.

ranges from simple linear processes such as random walk 
dynamics, to more complex spreading processes and 
consensus models and, finally, to nonlinear models that 
are based on neuronal biophysics and physiology.

In this Review, we examine the key contributions of 
these two parallel approaches to understanding com-
munication dynamics in brain networks. We investigate 
what key concepts of network topology can predict about 
patterns of network communication. We then focus on 
clarifying some of the explicit and implicit assumptions 
behind different dynamical models, what these models 
have taught us about the brain and how they relate to 
neurobiological theories and empirical evidence. Next, 
we attempt to place these theoretical ideas and models 
within the context of computational accounts of brain 
function. We end by looking at possible future insights 
that result from the development of more advanced com-
putational and theoretical tools and from the increasing 
availability of empirical data.

Conceptual framework
Network neuroscience conceptualizes brain function as 
emerging from the collective action of numerous sys-
tems elements and their mutual interconnections14,15. 
Brain networks extend across a broad range of spatial 
and temporal scales, and can be assembled from var-
ious recording and mapping techniques that capture 
(usually pairwise) relationships among elements. The 
analysis and modelling of brain networks draw from 
the methods and tools of network science16–18. Briefly, 
brain networks are represented as sets of neural elements 
(nodes) and their pairwise connections (edges), often 
summarized in the mathematical form of an adjacency 
matrix (also known as a connection matrix). The rela-
tionships between nodes and edges define the topology 

of the network, and edges may be directed or undirected, 
weighted or unweighted, depending on the nature of the 
empirical data from which the networks are constructed.

In FIG. 1, we present a conceptual framework that 
places communication dynamics in the context of two 
frequently studied domains of brain networks: struc-
tural connectivity and functional connectivity. Structural 
connectivity and functional connectivity differ in many 
fundamental respects. Structural connectivity (the 
connectome) reflects the anatomical (physical) rela-
tionships between neural elements; that is, their syn-
aptic connections or inter-regional projections (the 
‘wiring diagram’). Functional connectivity, by contrast, 
describes the set of pairwise statistical dependencies 
between the neurophysiological signals (time courses) 
recorded from individual neural elements. As such, 
functional connectivity can be expressed in many ways, 
from simple cross-correlations to more complex meas-
ures that attempt to infer patterns of directed influence. 
Although numerous studies have demonstrated similar-
ities in the configuration of structural connectivity and 
functional connectivity, the relationship between the 
two is non-trivial. Structural connectivity acts as a ‘skel-
eton’ that constrains the flow of neural signals. Subsets 
of structural couplings are engaged in a time-dependent 
and state-dependent manner. Resulting from signalling 
events that occur through these active links, patterns of 
functional connectivity exhibit fast dynamics that explore 
a large number of functional network topologies upon 
external perturbation and in the course of spontaneous 
fluctuations.

Importantly, observations of anatomy or time courses 
alone do not disclose dynamic patterns of neuronal 
signalling and communication. Direct observation of 
individual communication events (as opposed to their 

Figure 1 | A conceptual framework for linking structural connectivity and functional connectivity. The left panel 
shows a network of structural connections (grey lines) that link distinct neural elements (brain regions; black dots). Neural 
activity gives rise to signalling events that propagate, at each given point in time, along distinct subsets of structural 
connections (middle panel; signalling routes and implicated neural elements in orange). The resulting statistical 
dependencies (in blue; right panel) among regional time series can be captured as functional connectivity.
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Resilience
A network’s ability to adapt 
and/or recover from structural 
failures.

Betweenness centrality
A nodal measure of influence 
determined by the proportion 
of shortest paths that traverse 
a node.

Routing
The process of sending a 
message or signal through  
a determined path.

effects on time courses) is difficult to achieve at the level 
of individual pairs of neurons or brain regions, and full 
coverage is currently beyond our existing technolog-
ical capabilities at the systems level. However, models 
of communication processes and neuronal dynamics 
that are implemented on patterns of structural connec-
tivity generate patterns of information flow that can be 
tracked and recorded in silico, together with their ensu-
ing effects on time courses and functional connectivity. 
Our framework thus consists of a two-step generative 
model: the activity of neuronal elements that are cou-
pled through structural networks generates patterns of 
communication (representing time-varying causal rela-
tionships between neural elements), which in turn gen-
erate dependencies among the elements’ time courses 
that can be accessed as functional connectivity (FIG. 1). 
In other words, interactions between neural elements 
are dynamic, allowing flexible, time-varying patterns 
of information flow. When observed or aggregated over 
longer timescales, these dynamic patterns of information 
flow shape a (time-averaged) functional connectivity 
matrix. Empirical knowledge of structural and func-
tional connectivity can then be used to test predictions 
made by competing models that represent hypotheses 
about the underlying communication dynamics.

Within the proposed conceptual framework, com-
munication dynamics bridges structural connectivity 
and functional connectivity. Hence, communication 
dynamics in brain networks seems to be of fundamental 
importance for studies that characterize the brain’s capac-
ity for efficient integration and segregation of informa-
tion13,19,20, robustness and resilience to damage21,22, and 
ability to adapt and self-organize in response to func-
tional demands23–25. Important insight about possible, or 
likely, patterns of communication can be gleaned from 
the architecture (topology) of structural networks, with 
various local and global topological features supporting 
different aspects of local and global communication. 
The present account builds on the notion of coexisting 
segregation and integration, by showing that network 
topology cannot be studied in isolation, but must be 
considered in reference to a communication mechanism. 
This can be achieved by considering how network topol-
ogy enables neural elements to interact with and influ-
ence each other, providing a mechanistic explanation 
for the emergence of statistical relationships between 
the constituent elements.

Network topology and communication
Several core concepts from graph theory have been 
applied to characterize the topology of brain networks 
and its role in network communication. Topological 
attributes have proved especially insightful in the context 
of the segregation and integration of information20,26–29. 
Across multiple spatial scales, brain networks have a char-
acteristic topology that describes the system as a whole: 
heterogeneous degree and strength distributions, short 
path lengths and high clustering, a multi-scale modular 
organization and a densely connected core of high-degree 
nodes are some of the network attributes that are shared 
across species30 and scales31,32. Embedded in the system, 

neural elements derive their functionality by virtue of 
how they are connected — the connectivity fingerprint 
of each element33,34 — and by how they contribute 
towards the capacity of the network to integrate and 
segregate information.

Routing communication. The capacity for two network 
nodes to communicate is fundamentally conditioned by 
the available paths connecting them through sequences 
of unique nodes and edges. Notably, even small networks 
contain a staggering number of possible ways to create 
paths between any two nodes. In communication net-
works, the shortest path between two nodes has a spe-
cial role: the length of the shortest path is taken to be the 
topological distance between the nodes. Thus, the short-
est path length is thought to be an indicator of the ease  
with which signals can be transmitted between two 
nodes. In neural systems that communicate via electro
chemical transmission, minimizing the number of syn-
apses between any two neuronal elements (that is, path 
length) is intuitively desirable. Longer paths are more 
susceptible to noise, are more likely to involve a greater 
number of distinct processing steps, incur longer trans-
mission delays and are energetically (metabolically) 
more expensive to construct and use. The shortest-path 
statistics of a network — including the path length from 
one node to the rest of the network (closeness) and the 
propensity for nodes to occupy positions along many 
minimally short paths in the network (betweenness) — 
can be used to make predictions about the integrative 
capacity of individual elements and the entire network.

Is there any evidence to support shortest paths as  
a principal communication substrate in the brain? As a 
canonical example of a small-world network35, the brain 
possesses near-minimal path length36–38. Interestingly, 
having a short average path seems to be a costly but 
desirable attribute of brain networks. Several com-
putational studies have demonstrated that geometri-
cally embedded networks that minimize wiring cost 
are characterized by physically short connections that 
have an overall topology that increases the mean path 
length37,39,40. The near-minimal path length observed in 
real neural architectures violates strict wiring minimiza-
tion, requiring an additional material and energetic cost. 
This suggests that in the brain shortest paths are indeed 
utilized to ensure reliable and efficient communication, 
and hence stronger functional connectivity. Conversely, 
a longer path length between two neural elements should 
be associated with less direct signalling, yielding weaker 
functional interactions. Indeed, several studies have 
shown that the magnitude of functional interactions is 
negatively correlated with path length41–44.

Most analyses about the integrative capacity of neu-
ral networks rely on shortest-path-based metrics45–49 
(for example, betweenness centrality, closeness centrality 
and graph efficiency) and thus rest on the assumption 
that neural elements have the ability to route informa-
tion selectively through shortest paths. However, several 
considerations challenge the notion that communication 
between neural elements takes place exclusively through 
shortest paths. First, routing communication presupposes 
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Fibre tracts
A bundle of axons connecting 
two brain regions.

Search information
The amount of information 
needed to discover a path in  
a network.

that neural signals have access to information or knowl-
edge about the global network topology50–52 (BOX 1). This 
assumption is highly unlikely in a physiological system: 
it is difficult to envision how an action potential would 
encode its route and intended destination. Second, in 
many networks, reliance on shortest paths excludes most 
of the connections of a network from participating in 
communication processes, even when they provide 
near-optimal alternatives to the shortest path (FIG. 2a). 
For large-scale brain networks, this can amount to 

excluding more than 80% of the known fibre tracts21. Thus, 
shortest-path-based measures are insensitive to targeted 
edge removal as long as the subset of edges comprising 
shortest paths is preserved. A corollary is that the load 
of information flow on edges that comprise the shortest 
paths is disproportionately large, resulting in non-resilient 
communication that is prone to bottlenecks53 and vulner-
able to delays, loss of information and failure owing to 
damage54,55. Third, the trajectory of shortest paths strongly 
depends on how networks are defined. For example,  
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Box 1 | An information spectrum of communication processes

It is no surprise that neural systems have evolved to conserve space, materials, time and energy170. Another costly, but less 
obvious, aspect of neural communication is the amount of information needed for communication processes to unfold. In 
the context of neural coding (that is, the neural representation of information), it was long ago suggested that there are 
limits on the amount of information that spike trains can encode or carry given the constraints on the metabolic energy 
that is available to sustain the firing rate of a neuron171,172. A different account of information as a costly resource that 
constrains communication processes emerges in the context of how signals are transferred. Are neural elements capable 
of directing (routing) signals through the network? Do signals travel through the network towards a predefined target 
neural element?

These questions are often implicitly addressed by different models of neural communication. In fact, we can map 
communication processes onto a continuous spectrum of information. In the figure, various communication models that 
take place on toy networks are placed along a spectrum of information, qualitatively representing how much (if any) 
information is needed for each communication process to take place. The trajectory or flow of a signal (indicated by 
red-coloured edges) through structural network connections varies according to each communication model. On one 
end of the spectrum lay communication processes that operate through routing protocols, in which neural elements 
must have full knowledge of the network topology to relay messages or signals through a specific path, and to a 
predetermined target (see the figure). Communication through optimally short paths is an example of routing, but routing 
can take place through multiple, sub-optimal path ensembles, such as in packet switching in Internet communication.  
The search information of a signal decreases with the number of paths that are admissible for the communication process 
to take place. The other end of the information spectrum is represented by diffusive processes, in which the global 
structure of the network is unknown to any neural element and the notions of a source or target node may not be 
defined. The (unbiased) random walk model is an example of such a process (see the figure); in this case, signal 
propagation is only driven by local network properties. Likewise, dynamical models that trace the activity of a neural 
element with time are not dependent on neural elements having information about the network topology, or the global 
state of the system. Similarly, communication processes based on percolation theory (for example, a local  
or global parameter p determines whether a node adopts an ‘active’ state (in red; see the figure) or not, based on the 
fraction of neighbouring ‘active’ or ‘inactive’ nodes) only rely on local information about the states of the node and its 
neighbours. Between the two extremes of the spectrum, there are various communication models that are yet to be 
further explored in the context of brain communication. For example, greedy-routing strategies can be efficient for 
certain network topologies50 and require less information than routing communication173. A distance-based 
greedy-communication strategy consists of neural elements relaying signals to the neighbouring element that is closer 
to the target where the message is to be sent. Hence, each element must ‘know’ the distance between its neighbours 
and the target node, which requires considerably less information than knowing the entire network wiring diagram. 
Other communication 
strategies that require little 
information include 
preferential strategies in 
which nodes preferentially 
transfer messages 
(deterministically or 
probabilistically) to 
high-degree nodes as a 
zoom-out strategy, followed 
by a zoom‑in strategy, in 
which low-degree nodes are 
preferred101,173. These 
preferential strategies only 
require each element to know 
the degree of its neighbours, 
and to be able to determine 
whether it is in the zoom‑in  
or zoom-out phase of  
the process.
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Edge weight
A measure of the strength of 
the relationship between two 
connected nodes.

in the case of anatomical networks reconstructed from 
in vivo diffusion-weighted imaging, shortest paths may 
differ considerably depending on the choice of the meas-
ure expressing edge weight (for example, streamline count 
or density, fractional anisotropy, g‑ratio or combinations 
thereof) and on how these weights are transformed to 
topological distance (BOX 2; FIG. 2b). Given these con-
siderations, alternative communication models must  
be considered.

Parallel communication. Signal transfer that unfolds 
through multiple paths seems to be a more appropri-
ate communication model for brain networks42. Indeed, 
computational analyses suggest that the recruitment of 
different alternative pathways can increase efficiency, 
robustness and resilience to brain damage22,56,57. In this 
framework, the number of paths between two neural 
elements has been proposed to reflect the resilience of 
the communication process between such elements58. 
Various measures have been developed to capture 
aspects of parallel and resilient communication; for 

example, one measure of redundancy is defined in 
terms of the number of parallel paths that contain h links 
between two brain regions59. A similar approach21 is 
based on path ensembles that comprise the k shortest 
paths between node pairs, which leads to a measure 
of resilience that is defined in terms of the number of 
edge-disjoint paths (FIG. 2c). This approach also proposes 
a more robust measure of distance between node pairs 
that takes into account the length and embeddedness of 
all the paths that comprise an ensemble.

It is worth noting that functional connections have 
a different interpretation under the lens of commu-
nication modelling. Notably, functional connections, 
whether static or dynamic60,61, do not resolve the tra-
jectories or temporal patterns of signal propagation 
through anatomical connections; instead, the co‑
variation of the activity of two neural elements expresses 
the aggregation of local, global, feedforward and feed-
back network interactions and computations62–65. Thus, 
a functional connection generally results from informa-
tion flow through multiple, often polysynaptic paths, 

Figure 2 | Network topology and communication. a | Communication 
through shortest paths exclusively relies on a small fraction of high-strength 
connections, excluding most of the network connections from participating 
in the communication process. The schematic matrix represents a structural 
connectivity network (left triangle) and the structural connections 
comprising shortest paths (right triangle). The colour map indicates the 
physical length of the structural connections, and shows that long-range 
connections (‘small-world’ short-cuts) do not participate in shortest-path 
communication. b | Structural connection strengths are often interpreted 
as a measure of capacity for information flow. Connection strengths (Wi,j) 
must be mapped onto connection distances (Li,j) to compute shortest paths. 
In this example, the reciprocal of the connection strengths (values in red 
boxes) maps strengths onto distances (values in blue boxes). Blue-coloured 
edges represent the shortest path between nodes ‘s’ and ‘t’. Red edges are 
semi-metric edges; that is, the direct connection between node ‘s’ and ‘v’ is 
topologically longer than the indirect (polysynaptic) path. Note that  
the shortest path length from ‘s’ to ‘t’ is 11, and it comprises four edges; the 
second shortest path length is 12, but it contains only two edges. c | Relaxing 
the assumption that signals only flow through the shortest paths allows 
communication through a path ensemble comprising the k shortest paths, 

where k = 1 is the shortest path and as k increases, paths get progressively 
longer. The models illustrate three shortest paths (π1, π2 and π3) on an 
unweighted network. Note that the second and third shortest paths (π2 and 
π3, respectively) are degenerate, as they have equal lengths. Parallel 
signalling through path ensembles increases the resilience of the 
communication process. If the paths in the ensemble have disjoint edges 
(left; highlighted by the dashed black line), network communication is more 
resilient than in path ensembles in which edges are shared by several paths 
(right; highlighted by dashed black line). d | Structural and functional 
network communities rarely overlap. Neural elements that are densely 
interconnected (left side of the outlined red squares in the top matrix) do 
not trivially explain the emergence of functional modules (right side of top 
matrix). Likewise, neural elements that form functional modules (right side 
of the red-outlined squares in the lower matrix) are not always directly 
connected anatomically (left side of the lower matrix). This suggests that 
simple topological features such as direct connections and shortest paths 
cannot fully account for patterns of functional connectivity, which instead 
require a more nuanced exploration of the communication processes that 
lead to the observed functional interactions. Part c is adapted from REF. 21, 
Macmillan Publishers Limited. Part d is based on data from REF. 126.
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even in the presence of a direct anatomical connection 
between neural elements66–69. This redundancy implies 
that changes in or perturbations of functional connections 
cannot be directly interpreted as re‑routing of information 
flow along specific paths. Despite these considerations, 
functional connections undoubtedly convey some infor-
mation about the patterns of information flow through the 
underlying structure. For instance, temporal delays that 
maximize the lagged co‑variation between pairs of neural 
elements can be used to infer the direction (but not the 
actual route) of signal propagation70. Alternative statistical 
methods used to infer the directionality of information 
flow, such as Granger causality71, transfer entropy72,73 and 
others74, show that dominant patterns of information flow 
are associated with specific frequencies in neurophysio
logical recordings75,76. For example, posterior-to‑anterior 
information flow has been associated with high-frequency 
bands, whereas the reverse pattern is dominated by a 
lower-frequency band77. However, these analyses do not 
take into consideration the underlying anatomical con-
nections through which signals actually propagate. By 
contrast, a recent study combined structural and func-
tional data to infer ‘time-respecting’ paths through which 
signals propagate in the human brain78. Time-respecting 
paths were defined as sequences of nodes that were 
structurally connected and temporally synchronized. 
The time-respecting paths differed from the topological 

shortest paths; however, the former’s length exhibited a 
higher correlation with functional connectivity than did 
the shortest path lengths.

Communication efficiency. A more realistic account 
of the integrative capacity of neural systems requires 
an important distinction between the concept of ‘com-
munication efficiency’ and the commonly used graph-
theoretic measure called ‘global efficiency’ (REF. 79).  
The global efficiency of a network is defined as the mean 
of the inverse of the shortest path length between all 
pairs of nodes, thus capturing the global capacity of the 
network to transmit information in a parallel fashion. 
Although this measure is frequently invoked as an index 
of integration of information, it is important to note 
that, by relying on shortest paths, it inherits the cave-
ats associated with routing communication discussed 
above. Strictly speaking, global efficiency (perhaps bet-
ter called ‘routing efficiency’ (REF. 51)) provides an upper 
limit on the integrative capacity of a network, not taking 
into account congestion or other sources of transmission 
delays, and assuming equal interaction likelihoods across 
all node pairs. By contrast, a more realistic account of com-
munication efficiency must be sensitive to several addi-
tional constraints that are imposed by the topology and 
emergent dynamics of a system, and be contextualized by 
the communication model under consideration80.

Box 2 | Distance and communication

In the brain, distance is a multi-faceted concept. Fundamental to any network account of brain structure and function is 
the simple fact that the brain exists in 3D space; that is, it is geometrically embedded. This embedding defines the spatial 
layout of neural elements and their interconnections, and spatial proximity predicts greater likelihood of structural 
links174. Physical separation of pairs of nodes may be computed from spatial positions (Euclidean distance) or, in the case 
of structural networks, refers to the length of projections or axons, thus taking into account their spatial trajectory and 
curvature. These projection lengths are related to temporal conduction delays (which are also heavily dependent on axon 
calibre), which define temporal distances among node pairs.

However, physical or geometric distance is only one way in which one can express the degree to which neural elements 
are remote or close to each other. Network science adds the important dimension of topological distance, defined as the 
length of the shortest path by which two nodes can be linked. Topological distance may be expressed as the number of 
steps (an integer count) or in terms of the sum of edge lengths, derived from edge weights via a strength-to‑distance 
conversion function10,174. In neural systems, structural-edge weights denote the strength and reliability of a connection 
and signals are often assumed to be more likely to flow through stronger connections. Hence, the shortest path between 
two neural systems is a measure of proximity in terms of the maximum capacity of information flow between two nodes. 
A strength-to‑similarity conversion function translates edge weights from a strength (or capacity) space to a distance 
space, such that large edge strengths (high capacity of information flow) get mapped onto short edge distances, and vice 
versa. This mapping enables the computation of shortest paths — a classic minimization problem.

Despite the prevalent use of shortest paths in brain network analysis, there is no theoretical justification to support a 
particular conversion function. Conversion functions impose distortions of the network topology175, and it is unclear how 
such distortions affect graph-based measures that are evaluated on the various weighting schemes (for example, 
fractional anisotropy, fibre densities, fibre count and number of synapses). The most commonly used conversion function 
is the reciprocal of the edge strengths (FIG. 2b). This conversion function transform yields extremely skewed distributions 
of edge distances, with very few, extremely short connections that are prioritized to participate in the overwhelming 
majority of shortest paths. Alternative conversion functions have been proposed that diminish this effect41,175.

A lesser known implication of the strength-to‑similarity conversion is that it generally yields non-metric topological 
distances that violate the triangle inequality. In other words, the shortest path between two nodes may not be a direct 
edge between them (if that edge exists), but instead, an indirect path composed of multiple edges. The semi-metric 
nature of brain networks has important implications on communication modelling. On the one hand, the role of 
long-range connections is under-represented in semi-metric topologies. A path formed by several strong, but physically 
short, edges is often preferred over a direct long-range, but weak-tie connection28,102,176. Notably, this topological effect is 
inconsistent with the popular idea that long-range connections provide ‘small-world’ shortcuts for routing signals across 
long distances (thus increasing the efficiency of the network). On the other hand, it has been suggested that the 
semi-metric nature of brain networks supports high redundancy and sharing of information among neural elements102,177.
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Connection density
The fraction of connections 
present in a network, or a 
subsystem of a network, with 
respect to the maximum 
number of possible 
connections.

Morphospace
A space in which possible, 
impossible and real-world 
network architectures can be 
mapped.

The assumption that all node pairs communicate 
equally, which is inherent in the topological measure of 
routing efficiency, merits some attention, as this assump-
tion may not hold for brain networks. Both structurally 
and functionally, neural systems are characterized by 
a modular organization81 that is related to specialized 
neural processing82–84, that unfolds at various spatial 
and temporal scales31,32,85 and that is encountered across 
species30. Structurally, modules are generally character-
ized by groups of nodes that preferentially link to other 
nodes in the same community and that are sparsely con-
nected to the rest of the network86. A high within-module  
connection density promotes high within-module com-
munication efficiency87; sparser connections between 
modules enable efficient inter-module integration 
of information28,88,89. Hence, efficient integration of 

information is supported by both inter-module com-
munication and intra-module communication26,27,90, 
but not necessarily equally among all node pairs. 
Moreover, the efficiency of inter-module communi-
cation and intra-module communication may rely on 
different attributes, as communication can take place 
through different processes (for example, feedback ver-
sus feedforward processing) and on different spatial 
and temporal scales. Notably, a topology that optimizes 
segregation and integration of information through 
interconnected modules may not exhibit global rout-
ing efficiency as high as that of a non-modular topo
logy. This example further illustrates the divergence 
between the simple capacity measure of routing effi-
ciency and the more realistic accounts of communication  
efficiency (BOX 3).

A similar integration–segregation framework is 
postulated for modules derived as communities in 
functional networks28,29,91. Functional modules are 
characterized by groups of neural elements that exhibit 
coherent fluctuations in physiological activity, suggest-
ing that the neural elements are communicating or, at 
least, modulating each other’s activity92. Surprisingly, 
neural elements that are connected by dense structural 
connections do not trivially explain the emergence of 
functional modules93,94 (FIG. 2d). This counterintuitive 
mismatch between structural and functional modules 
suggests that simple topological features such as short-
est paths are insufficient to account for patterns of 
functional connectivity, which instead requires more 
complex topological attributes to model functional 
interactions between neural elements.

Indeed, empirically observed structure–function 
relationships among elements of brain networks offer 
insight into how neural elements may potentially com-
municate with each other. As mentioned above, for areas 
that are directly connected, the weight of the structural 
connection, which is often interpreted as a measure of 
flow capacity or bandwidth, is correlated with their func-
tional connectivity42,66. Beyond direct connectivity, as the 
topological distance (that is, path length) between two 
areas increases, their functional connectivity decreases, 
presumably reflecting a diminished capacity for com-
munication41,43,44. Moreover, functional connectivity 
between distant areas is greater if there are multiple 
paths between them, suggesting that the availability of 
parallel channels potentiates information transfer56,59. 
Reinforcing the importance of redundancy and resil-
ience, the greater the number of re‑entrant detours 
between two nodes, the greater their functional connec-
tivity41. Finally, how paths are embedded in the network 
also influences their functional interactions95,96. One 
study41 showed that functional connectivity between two 
areas is greater if the shortest path between them is more 
accessible to diffusing signals, allowing such signals to be 
transferred with greater fidelity. In this regard, shortest 
paths that traverse many high-degree nodes are more 
‘hidden’ from diffusing signals, as they provide many 
chances for detours or, from a biological perspective, a 
greater potential for the signal to be corrupted by signals 
from other sources97 (FIG. 3a).

Box 3 | Communication efficiency as a driving force shaping network structure

Communication processes in neural systems can also be studied from a natural 
selection perspective, whereby it must be asked what kind of communication 
process benefits most from the brain’s topological attributes, and how a preference 
for a particular communication process might drive the evolution of these 
attributes. For example, communication efficiency and wiring cost are two 
fundamental attributes that underpin the functionality of neural systems. 
Minimizing wiring enforces sparsity and penalizes long-distance communication. 
Efficient communication imposes costs on metabolic energy and processing speed, 
as well as the cost associated with the amount of information needed to identify and 
select short paths (for example, the search information). Jointly, these multiple cost 
demands probably play a major part in constraining the network morphospace of 
possible brain architectures178. One idea is that the brain, like most complex systems, 
has resulted from selection processes in which multiple, often competing, traits and 
constraints must be satisfied simultaneously36. An optimal solution to this problem is 
a balance between the competing traits such that the system can be functional. 
Optimization is assumed to be part of the intrinsic dynamics of natural evolving 
systems179, and the optimality conditions of any system are crucial for the survival 
and/or functionality of the system.

However, understanding the relationship between structure and functionality 
from a natural selection perspective is particularly challenging in the case of 
biological networks. For instance, in the context of neural systems, the question  
of how structure supports or optimizes communication efficiency is generally 
addressed by two different approaches. One approach is to study and characterize 
the structure and wiring cost of empirical networks and then to try to infer to what 
extent the structure is optimal to support and promote specific communication 
strategies. A second approach is to generate network structures that are optimal 
for specific communication strategies and then compare these optimal networks to 
empirical networks to assess whether they are structurally similar. Although the 
second approach provides a direct demonstration of the optimality of an empirical 
network to sustain a specific set of functions (for example, communication 
protocols), it also ignores the fact that biological systems are not engineered with  
a preconceived objective. Instead, evolution often results from tinkering; that is, 
natural selection operates on structures (morphologies) that already exist and 
cannot be rebuilt from scratch for the sake of optimality179. These historical 
contingencies impose strong constraints on the repertoire of possible structures 
that can be derived at any given moment, limiting the ability of a network to adopt 
a configuration that is optimal with respect to one or more functions. Nonetheless, 
several aspects of the topology of neural systems reflect optimization strategies. 
The hierarchical modular structure of neural systems, ubiquitous across scales and 
species, is a case in point. Experimental and computational studies have found that 
a hierarchical modular organization emerges as an optimal cost-efficient solution 
to diverse problems such as facilitating the coexistence of functional integration 
and segregation13, and enabling evolvability and adaptability180, while minimizing 
wiring and energetic cost1,4,93.
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Figure 3 | Interplay between architecture and communication dynamics. 
a | Search information and path transitivity capture the hiddenness of a path 
within the network. The blue-coloured edges show the shortest path from 
‘s’ to ‘t’. Each intermediary node in the shortest path has several edges that 
act as potential detours for a signal travelling through the shortest path. In 
a scenario where a signal starting at node ‘s’ and going to node ‘t’ 
propagates randomly within the network, the more detours it encounters, 
the less likely it is that the signal will travel through the shortest path. 
Search information measures the amount of information (in terms of bits) 
that such a signal would require in order to travel through the shortest 
path. Conversely, path transitivity measures the number of re‑entrant 
edges (red arrows departing and returning to the path) that would enable 
a signal to return to the shortest path after detouring from the path. b | A 
population of small-world topology networks (green markers) were 
evolved to simultaneously optimize diffusion efficiency (||Ediff||) and routing 
efficiency (||Erout||) , yielding an efficiency-morphospace of possible network 
configurations that maximize routing efficiency and minimize diffusion 
efficiency (front 1), maximize both routing and diffusion efficiency (front 2), 
maximize diffusion efficiency but minimize routing efficiency (front 3), or 
minimize routing and diffusion efficiency (front 4). All coloured regions 
indicate the existence of a possible network configuration. Notice that 
large regions of the morphospace are empty, indicating that the space of 
possible network configurations is strongly restricted. Red markers at each 
front show the final population of evolved networks for each front. Each 
front is characterized by a particular network topology. For example, 
networks in front 1 are modular, hence maximizing routing efficiency but 
minimizing diffusion efficiency, as the high ratio of intra-modular links to 
inter-modular links lowers the probability that diffusing signals will 
escape modules. Conversely, networks in front 2 are characterized by a 
highly connected core that supports diffusive signalling whereby highly 

connected hub nodes make even peripheral nodes accessible. Modular 
networks with a connective core (front 3) are not the most efficient on 
either axis, but the coexistence of these attributes may allow such 
networks to benefit from both diffusion and routing at different temporal 
and spatial scales. Empirically measured brain networks (outlined red 
circles) are not optimal with respect to any axis as they sustain a balance 
between diffusion and routing efficiency. c | Specialized communities or 
modules can be defined as groups of nodes in which information flows 
quickly or easily. This principle can be used to detect modules at different 
scales: the trajectory of a random walker on a network delineates groups 
of nodes (modules) that capture the random walker during various time 
intervals. The top panels illustrate one possible trajectory of a random walk 
on a small network, delineating four communities that tend to contain the 
trajectory of the random walker for some period of time. The colours of  
the nodes indicate their membership to a community. Each community can 
represent a single specialized neural unit that interacts with other units, in 
turn forming communities that are uncovered at larger temporal scales of 
a random walk. The bottom panels show a multi-scale flow-based partition 
of the Caenorhabditis elegans connectome, which outlines clusters of 
neurons (denoted by different colours) that reflect known functional 
circuits. Each frame represents a different timescale, as indicated by the 
parameter t. At short temporal scales, the trajectory of a random walker 
can only visit a few nodes and hence uncover small communities; for longer 
timescales, a random walker’s trajectory can visit more nodes, uncovering 
larger communities. For C. elegans, this multi-scale process uncovers a 
sequence of robust partitions that are nearly hierarchically organized and 
that correspond to known functional circuits. Part b is adapted from REF. 51. 
The top panels in part c are adapted from REF. 111, Proceedings of the 
National Academy of Sciences. The bottom panels in part c are adapted 
from REF. 121.
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Hubs
Highly connected nodes.

Path transitivity
The frequency of detours 
comprising two edges (that is, 
of length 2) that are available 
along a path. 

The potential influence of node degree along struc-
tural paths on information transmission poses an inter-
esting conundrum on the role of high-degree nodes, or 
hubs98. On the one hand, nodes with many connections 
are well positioned to facilitate integration of infor-
mation both within and between specialized mod-
ules29,40,49,86,99,100. Moreover, highly connected nodes tend 
to connect with other highly connected nodes, forming 
a dense connective core that theoretically enables fast 
and direct communication between subsystems27. For 
example, most of the shortest paths in a network travel 
through at least one high-degree node101, promoting 
re‑entrant edges (FIG. 3a), a structural attribute that 
has been associated with stronger functional interac-
tions102. On the other hand, in a decentralized scenario 
in which neural elements do not have knowledge about 
the global topology of the network, high-degree nodes 
facilitate detours that deflect messages away from opti-
mal routes. Accordingly, paths that contain high-degree 
nodes are less likely to be followed just by chance, an 
attribute that has been shown to be associated with 
weaker functional connectivity41. Thus, despite the 
potential central role that high-degree nodes occupy in 
communication processes, their contribution to com-
munication is dependent on the underlying dynamics 
of information flow.

Network dynamics and communication
In this section, we review communication processes 
from a dynamical point of view, building on the discus-
sion above on the importance of the underlying struc-
tural topology in constraining signal propagation. As we 
will highlight in this section, one of the most important 
distinctions between dynamical and topological analyses 
of brain communication is the amount of information 
(in the statistical sense) that is needed for the commu-
nication process to unfold (BOX 1). The models we review 
in this section do not assume that neural elements have 
the capacity to access (and somehow encode) informa-
tion about the global topology of the network10,51,56,103; 
instead, communication dynamics are driven by the 
interaction between the connectivity fingerprint and 
intrinsic dynamics of each node.

Flow-based communication models. One approach 
to model decentralized information flow is to assume 
that information disperses across the entire network 
through all possible paths and walks. The graph meas-
ure called communicability104 operates under this 
hypothesis, offering an upper bound on the parallel 
processing capacity of the system, as all elements take 
part in signal transfer. Whereas routing efficiency 
is only sensitive to disruptions that affect shortest 
paths, communicability is sensitive to disruptions of 
all edges105,106, supporting the intuition that pertur-
bations of any network edge should affect the flow  
of information42.

Parallel and redundant processing is important, but 
information that travels through all possible paths and 
walks can lead to an overloaded and congested sys-
tem53,107, in which loss and corruption of information are 

more likely and the energetic cost required to ensure the 
spread of information is exceedingly high36,108. Moreover, 
communicability does not take into account how dif-
ferent paths and/or walks are topologically embedded 
in the network. Conversely, flow-based approaches that 
are driven by local topological properties can be ener-
getically more efficient109,110, as the global topology may 
impose constraints on how information propagates111, 
thus avoiding a massively redundant amount of signals 
traversing the system.

The random walk is a flow-based model that 
describes the transfer of signals as a diffusion process 
that takes place on the network. At any given node, 
the probability that a signal — modelled by a random 
walker — will traverse a connection is proportional to 
the weight of the outgoing connections, thus assuming 
a preference for relaying signals through high-capacity 
connections. Locally, signal-diffusion dynamics depend 
only on the weights of the outgoing connections of 
nodes; globally, signal-diffusion dynamics are strongly 
driven by incoming connections, such that the larger 
the in‑capacity of a node, the more likely it is that sig-
nals will arrive. Hence, under a diffusion model, high-
indegree hubs have an integrative role112, as signals 
naturally flow towards them, whereas low-indegree 
nodes are difficult to reach. Formally, these properties 
are captured by a pairwise statistic called the mean 
first-passage time, which measures the expected length 
of a (random) walk (in terms of number of traversed 
edges) between two nodes113.

The mean first-passage time defines a topological 
distance between any two nodes communicating by 
diffusion, just like the shortest path length defines a 
topological distance for optimal routing. The inverse of  
the mean first-passage time is a global measure of dif-
fusion efficiency that captures the integrative capac-
ity of a network under a diffusion-based model of 
communication51. Comparative analysis of several 
real-world networks shows that centralized, star-like 
topologies and decentralized, modular topologies pro-
mote diffusion and routing efficiency, respectively. 
Interestingly, the topology of most real-world net-
works, including brain networks, achieves a balance 
between diffusion and routing efficiency by combin-
ing modular organization with a core of highly inter-
connected hubs (FIG. 3b). Modules contribute towards 
increasing the global routing efficiency of the system, 
whereas the central core contributes towards increas-
ing the global diffusion efficiency. A computational 
study used a multi-objective optimization technique 
to investigate the capacity of human anatomical net-
works to evolve towards topologies that maximize or 
minimize diffusion and routing efficiency while pre-
serving the wiring cost of the system114. The results 
of this investigation indicated that large-scale brain 
networks minimize diffusion efficiency, suggesting 
that the topology of brain networks is not well suited 
for the global spread of signals through diffusion. One 
possible interpretation of this finding is that large-
scale topology limits diffusion to contain the spread 
of random perturbations and noise.
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Integration and segregation through routing and diffu-
sion. It is important to note that global measures such as 
routing and diffusion efficiency may not be representa-
tive of the local aspects of the network topology, as they 
discount the heterogeneity of the elements of the system. 
The inherently modular structure of neural systems sug-
gests a different approach, in which efficiency measures 
are evaluated over network subsystems, as opposed to 
globally. Such analysis offers an alternative account of 
how neural systems might combine aspects of diffusion 
and routing. Indeed, modular structures counteract 
global diffusion efficiency, as modules act as structural 
‘basins’ from which signals are unlikely to escape115,116. 
However, from a flow-based perspective, modules are 
characterized by clusters of nodes among which infor-
mation flows quickly and easily111, succinctly outlining 
network domains in which the efficient integration of 
information through diffusion is favoured (FIG. 3c). Thus, 
communication through diffusion may operate most 
efficiently within modules, whereas efficient flow of 
information between modules may necessitate routing 
communication.

Principles of flow-based dynamics have been used 
to uncover multi-scale organization of neural systems, 
in which modules detected at different timescales 
can be linked to biological and functional attributes. 
Under this framework, the temporal scale is defined in 
terms of the length of time — or the number of hops 
— needed before a random walker can escape a clus-
ter of nodes111,115. For example, a flow-based model for 
multi-scale community detection on human structural 
networks found groups of brain regions that capture 
diffusive flow over various timescales116. Several of the 
detected components had a strong correspondence with 
unimodal functional communities, such as the visual, 
auditory or somatomotor systems. Interestingly, flow-
based modules exhibited little correspondence with 
distributed systems that are generally associated with 
multiple cognitive states and that are characterized 
by containing a disproportionate number of connec-
tor hubs117 that enable them to bridge different func-
tional sub-subsystems118–120. A similar approach was 
implemented in the neuronal network of the nematode 
Caenorhabditis elegans, in which sequences of robust 
partitions of the network exhibited a nearly hierarchi-
cal organization that strongly corresponded to known 
functional circuits121 (FIG. 3c).

Communication processes as a function of time. So 
far, we have considered the progression from tar-
geted routing to structurally guided diffusion. The 
formalism adopted in the sections above emphasizes 
the static, long-term properties of such processes, 
embodied by statistics such as efficiency, communi-
cability and mean first-passage time. Neural signalling 
is, however, highly dynamic. The waxing and waning 
of neuronal firing rates are associated with complex 
patterns of synchronization and desynchronization 
across multiple timescales. The transient reconfigura-
tion of these communication patterns suggests that it is 
meaningful to consider how information may diffuse 

to new elements over time. In the following sections, 
we consider how to trace the temporal evolution of 
communication processes, using both computational 
and statistical models.

In contagion and spreading models, the state of a 
node depends on the states of its neighbours. In a neu-
ral context, local perturbations or signals — for example, 
representing the transduction of sensory stimuli — dif-
fuse to connected elements. Neural elements are more 
receptive to information from topological neighbours if 
they are exposed to multiple simultaneous or coincident 
signals. By adding a finite threshold (that is, the number 
or proportion of neighbours that must activate before a 
node itself activates), the excitability of the network can 
be tuned parametrically, allowing a broad repertoire of 
emergent network behaviours.

This principle has been implemented in various 
random-walk models52,122,123, threshold models22,124–127, 
epidemic-spreading models128–130 and avalanche mod-
els131. A simple threshold model implemented on large-
scale cortical connectivity126 found that regions that 
frequently co‑participated in the same information 
cascade were more likely to exhibit stronger resting-
state functional connectivity (FIG. 4a). Moreover, the 
anatomical embedding of polysensory networks, such 
as the default-mode network, favours the conver-
gence of spatially remote signals onto these systems. 
Another model designed to predict functional con-
nectivity from structural connectivity52 demonstrated 
that although local dynamics of neurons and neu-
ronal populations are nonlinear and nonstationary, 
the correlation structure of haemodynamic activity 
can be approximated by a simple, low-dimensional 
diffusion process that operates on the anatomical 
network. Altogether, applications of spreading mod-
els show that these models, despite their simplicity, 
may enable us to trace empirically observed patterns 
and characteristics of functional systems to features 
of underlying communication dynamics.

A natural extension to this approach is to endow 
individual nodes with intrinsic, biophysically realistic 
dynamics. Rather than simulate the spiking of millions 
of individual neurons, one may consider the mean activ-
ity (for example, firing rates and membrane potentials) of 
neuronal ensembles or populations of neurons12,132. The 
time-varying activity of a neuronal population is typi-
cally described by one or several differential equations, 
which are then coupled according to anatomical connec-
tivity patterns. The collective dynamics of these neural 
elements, conditioned by anatomy, yield self-sustained 
oscillations and structured patterns of inter-regional 
synchrony. Large-scale nonlinear models have proved 
versatile, and recapitulate a range of phenomena, includ-
ing electrical and haemodynamic functional connectivity 
patterns66,133, clustering into intrinsic connectivity net-
works134. In addition, nonlinear dynamical systems may 
be configured to match, both qualitatively and quantita-
tively, various nonstationary behaviours that are observed 
in neural activity. For example, dynamical models may 
display multistable rhythms, with alternating periods of 
high and low synchrony135.
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Core–periphery
A tendency for a network  
to contain a densely 
interconnected central 
component.

Modularity
Propensity for nodes to  
form internally densely 
connected clusters.

How is communication conceptualized in such 
models? In the course of numerical integration, 
neuronal populations (nodes) influence each other’s 
biophysical state through a diffusion-like process of 
passing incremental influences through the pairwise 
structural connections. Communication between 
two populations manifests as intermittent episodes 
of coherence136. Coherence among neurons enables 
rhythmic modulation of postsynaptic excitability, cre-
ating time windows when input gain is maximized137 
(FIG. 4b). The addition of noise in the presence of 
critical dynamics138 seems to provide the best fit to 
empirically observed data134,139. Akin to stochastic 
resonance, this noise-induced synchronization is an 
attractive model for a communication system that is 
built around inherently low-fidelity electrochemical 
signal transmission140. The emergent communication 
process is richly dynamic: noisy fluctuations enables 
coherence to be rapidly established and dissolved, 
resulting in selective routing of signals141 (FIG. 4c). 
This point deserves further consideration as we turn 
to the link between communication dynamics and 
communication.

Network computation and communication
So far, we have considered attributes of network topo
logy that, in conjunction with a spectrum of dynami-
cal models, contribute to communication processes in 
brain networks. Much of the interest in communication 
dynamics ultimately derives from their crucial role in 
neural computation. In this final section, we highlight 
several aspects of brain network communication that 
illuminate mechanisms by which brain networks perform 
computations.

Communication dynamics as effective connectivity. 
Functional connectivity is a major construct through 
which network-wide processes in the brain are 
described and monitored, during both rest and task 
conditions. It is worth reiterating that in its most com-
mon usage, functional connectivity expresses statistical 
dependencies among time courses (correlations) that, as 
has been pointed out in many empirical and modelling 
studies142, do not generally represent direct neuronal 
signalling. More sophisticated measures have been 
proposed that are based on partial correlations143,144, 
coherence145 or temporal precedence cues that ena-
ble estimation of directed interactions74,146,147. Owing 
to the inherent interdependencies and (in the case of 
correlations) the transitivity of the individual pairwise 
measurements, networks constructed from bivari-
ate estimates of functional connectivity face metho
dological difficulties. For example, in such constructed 
networks, node degree and strength may not accurately 
predict node influence or centrality100, and the concept 
of a path (or walk) is ill-defined, as sequences of pair-
wise functional connections do not represent actual 
signalling routes.

Effective connectivity has been proposed as a more 
powerful and unambiguous way to capture stimulus-
dependent or task-dependent patterns of causal influence 

among neural elements5,148. As effective connectivity 
cannot be measured directly, it is derived through a 
process of model construction and inference under 
rigorous criteria of model selection and fit. The limits  
on the scalability of this approach, which are imposed by 
the inferential nature of the process, are being addressed: 
for example, in recent work, effective connectivity was 
generated from whole-brain resting-state functional 
recordings149,150. Models of communication dynamics 
may offer a new perspective on effective connectivity 
that is complementary to ‘model inversion’ or inference, 
as they define ‘forward’ or generative models. The tem-
poral sequences and spatial patterns of communication 
events in structural networks may be viewed as snap-
shots of effective (causal) connections that drive neural 
computation. As a generative model of effective connec-
tivity, communication dynamics may offer a mechanistic 
link between the empirically more accessible domains of 
structural and functional connectivity (FIG. 1).

Computation by networks. The notion that computation 
is distributed among many elements and connections in 
networks is not new — it underpins most accounts of neu-
ral networks that have been presented over past decades, 
including the seminal advances made by connectionism 
and connectionist models (BOX 4). Like connectionism, 
network neuroscience emphasizes the role of ensem-
bles of network nodes and edges in performing com-
putational transformations on signals and activations. 
One important difference is that network neuroscience 
stresses the role of specific topological attributes in shap-
ing computations. For example, as discussed earlier, the 
modular and core–periphery organization of many struc-
tural brain networks constrains the possible patterns of 
signal flow and the ease with which information can be 
distributed and shared20,29,151 (FIG. 4c).

As the field advances, structural concepts such as 
modularity and core–periphery organization are taking on 
increasingly dynamic interpretations. With anatomical 
networks acting as scaffolds or structural skeletons that 
enable certain interactions while excluding many others, 
neuronal signalling (and the ensuing signal transforma-
tions; that is, computations) are inherently dynamic and 
context- or task-dependent152,153. Individual network ele-
ments fluctuate in their modular affiliation25,154 and their 
functional connectivity with other parts of the brain155,156, 
and extended functional networks reconfigure with 
changing task demands156–159.

What neural mechanisms drive these changing pat-
terns? Empirical and modelling studies suggest that 
changes in functional activations and connectivity 
can be traced to changing patterns of communication 
dynamics; that is, varying signal flow through specific 
subsets of structural connections. Models of attention 
and cognitive control have long suggested that these 
processes can act to selectively open subsets of com-
munication paths to aid specific behaviours or compu-
tations. Synchrony23,160 and “communication through 
coherence” (REF. 161) emphasize the importance of 
temporal (phase) relationships for sharing and trans-
mitting signals along paths that can be dynamically 
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reconfigured on fast timescales. The limits on the 
connection density, bandwidth and coding capacity 
of structural connections suggest that such connec-
tions participate in different communication events 
at different times, with effective paths opening and 
closing with changes in processing demands. A related 
model proposes that flexible routing of information is 
achieved through virtually instantaneous switching 
between different states of collective dynamics141,162. 
These ideas suggest important roles for transient syn-
chrony and collective dynamics in distributing infor-
mation in a spatially and temporally precise manner. 
A goal for future work is to find links between net-
work topology and communication dynamics that can 
address the empirical problem of how brain networks 
perform computations in a manner that is adaptive, 
dynamic, fast and flexible. Another important future 
avenue is the use of appropriate experimental strategies 
to identify communication schemes that are used in the 
brain. At the microscale, communication pathways in  
neuronal circuits might be observed by stimulating 
individual neurons and tracking the pattern by which 
the perturbation spreads. The timing of this pattern, 
together with information about the underlying 
structural connectivity, may enable inferences about 
likely communication strategies. At the macroscale, 
the propagation of transcranial magnetic stimulation 
pulses can be measured with electroencephalography 
or magnetoencephalography 163,164, and the time at 
which these pulses arrive at downstream brain regions 

or nodes might be used to infer likely propagation 
routes. Another strategy is the use of single-pulse 
electrical stimulation to perturb extended networks in 
vivo and the measurement of cortico-cortical-evoked 
potentials165.

A final point relates to the nature of the funda-
mental units of neuronal signalling on which network 
computations are carried out. Most theories assume 
that neural information is encoded in spike trains and 
activation patterns, and yet how this information is 
transmitted within extended networks in a manner that 
maintains representational content is not well under-
stood. Does neural information travel in the form of 
discrete packets, somewhat analogous to routing in 
telecommunication networks54,55 and, if so, are these 
packets addressable to specific targets? Or is neural 
communication more akin to broadcasting; that is, is 
it primarily undirected? Most structurally guided com-
munication models implicitly assume that signals are 
self-contained packets of information or signal units 
that are passed, essentially intact, from node to node. 
Routing through shortest paths operates with a single 
objective, which is to minimize the communication 
delay. This implies that the sequence of nodes that 
comprise the shortest path is selected not to perform a 
computation but only to relay an intact message from 
a source node to a target node. Hence, communication 
through shortest paths does not consider computation. 
Similarly, most communication models that consider 
parallel processing21,58,59,80 use packets of information 
that are replicated and travel simultaneously through 
multiple pathways, affording redundancy and resilience 
to the system. However, such models do not consider 
that signals are transformed — for example, within 
local circuits — as they are transmitted between differ-
ent subsystems or areas. By contrast, time-dependent 
diffusion-like models, whether discrete or continuous, 
express communication as an influence or modulation 
among neighbouring neural elements, more com-
mensurate with a definition of communication that 
includes computation and signal transfer. Under this 
framework, the communication process consists of a 
sequence of time-dependent causal influences (flexible, 
time-dependent effective connectivity) between a set of 
neural elements.

Several theories (for example, the free-energy prin-
ciple166) have posited that brain networks use some 
form of prediction-error propagation to encode rep-
resentations. How global network architecture shapes 
the capacity of the system to minimize variational 
free energy and enact this mechanism is an exciting 
topic for future research167. More generally, how mes-
sage passing and local computation can be reconciled 
remains unclear. Given the importance of neural sig-
nalling for computation, these and other questions 
regarding the nature of neural information and its 
transmission within extended, sparse and modular 
networks deserve greater attention. Models of com-
munication dynamics can offer important insights as 
to the constraints and consequences that are inherent 
in different signalling protocols.

Figure 4 | Communication processes as a function of time. a | The top row depicts 
a linear threshold model in which the state of a node depends on the state of its 
neighbours. Multiple competing signals were initiated (from seeds ‘I’ and ‘j’) and 
diffused over time through an anatomical network derived from diffusion-weighted 
imaging. The polysensory association networks (the default-mode network and the 
frontoparietal network) were frequently the point of convergence for remote signals 
in this model (reflected by their high diverse neighbourhood scores; left chart in 
bottom row;), suggesting that the integrative properties of these functional 
networks naturally arise from their anatomical embedding. Much of the spreading 
was mediated by a compact core of highly connected areas, including the 
precuneus, posterior cingulate, medial prefrontal cortex and bilateral insulae  
(see right image in bottom row), suggesting that this central component is crucial for 
mediating pairwise interactions and broadcasting of signals on the network. 
b | Multi-unit activity in dissociated hippocampal neurons reveals the development 
of microscopic communication patterns. Over 14 days in vitro (DIV), cultures 
exhibited an increased repertoire of spontaneous bursting activity, resulting in 
functional networks that increased in strength, density and size (left). Interestingly, 
this period was marked by a pronounced tendency for rich (highly connected) 
neurons to become richer, yielding a central core of highly connected hub neurons 
(red-ringed circles; middle panel). Multi-unit activity (MUA) exhibited distinct flow 
patterns and heterogeneous profiles, with some units acting as originators or 
‘leaders’ and others acting as ‘followers’ (right). c | Organized communication 
patterns among cortical neurons. The weighted rich-club coefficient (ϕw; red) is 
shown for the total outgoing information transfer (IT; estimated via transfer entropy) 
for each neuron. The blue curve shows the cumulative outgoing information. The 
dashed lines (green, blue and magenta) show subnetworks (right) that cumulatively 
account for 80%, 70% and 60% of total outgoing information. Neurons with the 
greatest incoming and outgoing transfer entropy tend to interact with each other, 
forming a densely interconnected core. A large proportion of total information 
appears to pass through this small, highly privileged subset of neurons. Part a is 
adapted with permission from REF. 126, Elsevier. Part b is adapted from REF. 187.  
Part c is adapted from REF. 188.
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Conclusion
Network neuroscience has begun to reveal how net-
work topology and dynamics shape the flow of neu-
ronal signals underlying brain function; however, many 
gaps in our knowledge remain, imposed by limits on 
data and of recording tools. For example, empirical 
access to communication dynamics is limited by the 
availability of observational tools that allow direct 
recording of elementary signalling and communica-
tion events. Hence, although it has become possible 
to map structural connections and record temporal 
dependencies among local time series, the mechanisms 
by which signals are transferred across the network in 
a manner that allows flexible and adaptive computa-
tion remain elusive. The spectrum of communication 

models considered in this Review may serve to guide 
future experimental investigation of these mechanisms. 
Despite limitations, there are also considerable oppor-
tunities for gaining generalizable knowledge on how 
brain networks operate. For example, dynamic network 
communication may offer a theoretical framework that 
can contribute to understanding behaviour and cog-
nition, including patterns of change unfolding during 
development and with ageing168. It may also become an 
important tool for predicting the effects and outcomes 
of perturbations, including lesions and focal stimula-
tion163,169. Building on topology and dynamics, the con-
fluence of empirical and theoretical studies is poised to 
add significant new insights into the network basis of 
brain function.
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