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Abstract

Dynamic models of large-scale brain activity have been used for reproducing many empiri-

cal findings on human brain functional connectivity. Features that have been shown to be

reproducible by comparing modeled to empirical data include functional connectivity mea-

sured over several minutes of resting-state functional magnetic resonance imaging, as well

as its time-resolved fluctuations on a time scale of tens of seconds. However, comparison of

modeled and empirical data has not been conducted yet for fluctuations in global network

topology of functional connectivity, such as fluctuations between segregated and integrated

topology or between high and low modularity topology. Since these global network-level

fluctuations have been shown to be related to human cognition and behavior, there is an

emerging need for clarifying their reproducibility with computational models. To address this

problem, we directly compared fluctuations in global network topology of functional connec-

tivity between modeled and empirical data, and clarified the degree to which a stationary

model of spontaneous brain dynamics can reproduce the empirically observed fluctuations.

Modeled fluctuations were simulated using a system of coupled phase oscillators wired

according to brain structural connectivity. By performing model parameter search, we found

that modeled fluctuations in global metrics quantifying network integration and modularity

had more than 80% of magnitudes of those observed in the empirical data. Temporal prop-

erties of network states determined based on fluctuations in these metrics were also found

to be reproducible, although their spatial patterns in functional connectivity did not perfectly

matched. These results suggest that stationary models simulating resting-state activity can

reproduce the magnitude of empirical fluctuations in segregation and integration, whereas

additional factors, such as active mechanisms controlling non-stationary dynamics and/or

greater accuracy of mapping brain structural connectivity, would be necessary for fully

reproducing the spatial patterning associated with these fluctuations.
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Author summary

In human neuroscience, there is growing interest in temporal fluctuations in coactivation

patterns of resting-state brain activity. To elucidate generative mechanisms of these fluctu-

ations, theoretical studies try to reproduce their empirical properties by simulations using

dynamic models of large-scale spontaneous brain activity. However, evaluations of the

reproducibility have not been extended so far to the fluctuations in global network topol-

ogy of coactivation patterns, recently shown to be related to human cognition and behav-

ior. Here we examine the extent to which a stationary model typically used for simulating

resting-state activity can reproduce spatial and temporal patterns of the empirically

observed fluctuations in global network topology. We found that such a model success-

fully reproduced the magnitude of empirical fluctuations as well as their temporal dynam-

ics, whereas their spatial patterning was not fully accounted for by the simulation. Our

results suggest that stationary models can explain many empirical properties in the fluctu-

ations in global network topology, while modeling of non-stationary dynamics and/or

greater estimation accuracy of anatomical connections underlying the simulation would

be required for complete replication. This finding provides new insights into how fluctua-

tions in global network topology of coactivation patterns emerge in the human brain.

Introduction

Neural elements in the brain are structurally connected and functionally coupled heteroge-

neously to form complex networks, in which neurons, neuronal populations, or brain regions

can be viewed as nodes linked by edges of structural connectivity and functional connectivity

[1, 2]. Structural connectivity refers to a pattern of anatomical connections between neural ele-

ments [3], defining the “wiring diagram.” On the other hand, functional connectivity refers to

a pattern of statistical dependence among activities of neural elements [4], which, in human

neuroimaging, has typically been assessed by the blood oxygenation level dependent (BOLD)

signal measured over several minutes of resting-state functional magnetic resonance imaging

(rs-fMRI) [5]. Recent advancements in measurement and analysis of rs-fMRI data allow track-

ing fluctuations in functional connectivity on a time scale of tens of seconds [6–9]. Fluctua-

tions in such time-resolved functional connectivity have been found not only at the individual

edge level, but also at the global network level; for example, fluctuations between segregated

and integrated network topology [10] and fluctuations between high and low modularity

topology [11, 12]. Fluctuations in global network topology of time-resolved functional connec-

tivity have been associated with various types of human behavior, e.g., pupil dilation [10] and

eyelid closures [13] during rest, as well as cognitive performance [10] and decoding accuracy

[14] during tasks.

Along with empirical studies, a number of efforts have been made to model collective neu-

ral behavior in large-scale cortical systems [15], such as regional cortical activity during rest,

and there is an increasing availability of computational tools to support these modeling prac-

tices [16, 17]. Simulating resting-state cortical activity using a set of nonlinear dynamic models

wired according to structural connectivity generates synthetic BOLD time series that can be

processed to yield functional connectivity, illustrating relations between anatomy and brain

dynamics [18, 19]. Modeling of rs-fMRI-based functional connectivity has also been per-

formed with other types of dynamic models of large-scale brain activity [20–23]. Furthermore,

modeling efforts have recently been extended to fluctuations in time-resolved functional
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connectivity to reproduce salient empirical findings [9, 24–27]. Features of functional connec-

tivity being explained by model simulations are comprehensively reviewed in [28].

While fluctuations in modeled time-resolved functional connectivity have started to be

investigated, the reproducibility of fluctuations in its global network topology has not been

comprehensively evaluated. Existing studies have shown that model simulations can generate

fluctuations in integrated topology [29] as well as in global network efficiency [8] (a network

metric closely related to modularity), but fluctuations in these global network configurations

have not yet been directly compared to the empirical counterparts. Specifically, neither a

detailed model parameter search using empirical data nor an examination of the degree to

which empirical fluctuations can be predicted by the model has been performed. Moreover, no

comparison has been conducted so far for many spatial and temporal features associated with

network states determined based on fluctuations between segregated and integrated topology

[10] or high and low modularity topology [12]. Examples of such features include the quantity

of network metrics used for determining network states, temporal dynamics of transitions

over network states, and spatial patterns of functional connectivity during each network state.

In addition, it remains unclear if some or all aspects of empirical fluctuations can be accounted

for by emerging properties of nonlinear stationary dynamics or require active physiological

mechanisms, e.g. to trigger transitions between networks states.

To address these gaps in the literature, we compared fluctuations in global network topol-

ogy of modeled and empirical functional connectivity and examined the reproducibility of

empirical findings. We modeled regional resting-state cortical activity using a variant of the

Kuramoto model [30, 31], a coupled phase oscillator system in which each oscillator was linked

to each other based on brain structural connectivity, and generated modeled BOLD signal

using the Balloon/Windkessel hemodynamic model [32]. With this stationary model of spon-

taneous brain activity, we evaluated fluctuations in global network topology of modeled func-

tional connectivity by comparing their magnitude to that derived from empirical functional

connectivity and searched (fitted) model parameters, such as the global coupling constant and

the conduction velocity, based on this evaluation. With the model parameters selected, we

compared network states of functional connectivity (segregated and integrated states [10];

high and low modularity periods [12]) between the modeled and empirical data. We first

checked the reproducibility of network metrics used for determining network states, as well

as the reproducibility of temporal metrics characterizing the transition dynamics of network

states. We then examined whether spatial patterns of functional connectivity during each net-

work state are reproducible or not in the modeled data. We particularly focused on examining

the reproducibility of empirical findings regarding spatial connectivity patterns in previous

studies [12, 33], where we reported characteristic between-state changes in functional connec-

tivity within/between task-positive and task-negative networks and in the similarity between

structural connectivity and functional connectivity. Through these comparisons, we demon-

strated which empirical features of fluctuations in segregation and integration can be repro-

duced by a stationary dynamic model typically used for simulating resting-state brain activity.

Materials and methods

Data set

Imaging data in this study are from the data sample labeled 100 Unrelated Subjects in Connec-

tomeDB (https://db.humanconnectome.org), the database managed by the Washington Uni-

versity-University of Minnesota (WU-Minn) consortium of the Human Connectome Project

(HCP; http://www.humanconnectome.org). Participants were recruited by the WU-Minn

HCP consortium and provided written informed consent prior to experiments [34]. All
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experimental procedures were approved by the Institutional Review Board (IRB) at Washing-

ton University (IRB number 201204036; “Mapping the Human Connectome: Structure, Func-

tion, and Heritability”) and no further IRB approval is required for our data analysis. From

this data sample, we first discarded 15 subjects because of their large head movements during

acquisitions of rs-fMRI data. Subjects were excluded when maximum translation exceeded 3

mm, maximum rotation exceeded 3˚, or mean framewise displacement (FD; the l2 norm

version) exceeded 0.2 mm [35] in at least one run of rs-fMRI acquisition. We additionally

excluded one subject aged� 36 years to obtain a sample of young adults aged� 22 years

and< 36 years. The final number of subjects in this sample was 84 (male, 40; female, 44).

All MRI data in this data sample were acquired with a 32-channel head coil on a modified

3T Siemens Skyra. Scanning parameters of acquired T1-weighted structural images were: repe-

tition time (TR) = 2,400 ms, echo time (TE) = 2.14 ms, flip angle = 8˚, field of view (FOV) =

224 × 224 mm2, 320 slices, and voxel size = 0.7 mm isotropic. The rs-fMRI data in this sample

were acquired with the following parameters: TR = 720 ms, TE = 33.1 ms, flip angle = 52˚,

FOV = 208 × 180 mm2, 72 slices, and voxel size = 2 mm isotropic. For all 84 subjects, four

runs of rs-fMRI data were collected with an eyes open condition and the duration per run was

around 14 min (1, 200 time points). Scanning parameters of diffusion-weighted images (DWI)

were: TR = 5,520 ms, TE = 89.5 ms, flip angle = 78˚, FOV = 210 × 180 mm2, 111 slices, and

voxel size = 1.25 mm isotropic (three shells, two repeats, and 36 b0 scans). The number of gra-

dient directions of the acquired DWI data was 270 and the b-value was 1, 000, 2, 000, and 3,

000 s/mm2 for each of the three shells.

Data preprocessing

The data sample downloaded from the ConnectomeDB has already been preprocessed with

the minimal preprocessing pipeline of the HCP [36]. Preprocessing steps for rs-fMRI data

included in this pipeline were: correction of gradient distortion, motion correction, removal of

bias fields, correction of spatial distortion, transformation to Montreal Neurological Institute

(MNI) space, and normalization of the image intensity. Preprocessing steps for DWI data

included normalization of the intensity and corrections of susceptibility distortion, eddy cur-

rent distortion, motion-related artifact, and gradient nonlinearly.

To further improve data quality, we additionally preprocessed the rs-fMRI data by taking

the following steps: (a) removal of the first 10 s of volumes, (b) removal of outlier volumes and

interpolation (the percentage of interpolated volumes was 3.6 ± 0.1% [mean ± SD across all

subjects and runs]), (c) regressing out the Friston-24 motion time series [37] and the global,

white matter, and cerebrospinal fluid mean signals, and (d) detrending and band-pass filtering

(cutoff frequency: (66 TRs)−1 = 0.021 Hz [low], 0.1 Hz [high]). To exclude spurious fluctua-

tions, we specified the low-cut frequency of the band-pass filtering to the reciprocal of the

width of the sliding window for time-resolved functional connectivity [38, 39]. The outlier

removal and interpolation in step (b) were performed using 3dDespike in the AFNI package

[40] as in [41]. The removal of outlier volumes is similar to motion scrubbing and censoring

[42, 43], but we replaced outliers with interpolated volumes instead of discarding affected time

points, in order to keep the original number of time points within a sliding window over the

whole time course. We chose to include global signal regression in step (c) to remove global

artifacts that are attributable to motion and/or respiration [44].

White matter fiber tracts were reconstructed from the DWI data using generalized q-sam-

pling imaging [45] and deterministic streamline tractography. The use of the generalized q-

sampling imaging method allows for the reconstruction of complex fiber configurations.

Details of the procedure of tractography are presented in [46–48].

Fluctuations in network topology of modeled functional connectivity
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Cortical parcellation

Connectivity analyses were performed in a region-wise manner within the cortex. Nodes of

connectivity networks in this study were assigned to each of the 114 distinct cortical parcels,

made by a subdivision of the Desikan-Killiany atlas [49] (see S1 Fig). These subdivided parcels

were obtained from the atlas filesmyatlas_60_lh.gcs andmyatlas_60_rh.gcs in the Connectome

Mapper package (https://github.com/LTS5/cmp). In addition, we assigned every node (parcel)

to one of the seven intrinsic connectivity networks defined in [50] by evaluating the area of

overlap of cortical surface. These seven networks are named as follows: the control network

(CON), the default mode network (DMN), the limbic system (LIM), the dorsal attention net-

work (DAN), the saliency/ventral attention network (VAN), the somatomotor network

(SMN), and the visual network (VIS).

Structural connectivity

Structural connectivity strength between a pair of cortical regions was measured using fiber

density, defined as the streamline count between the two regions divided by the geometric

mean of the surface areas of these regions. We used fiber density as a strength metric of struc-

tural connectivity in order to compensate for an effect of the size of regions on streamline

counts [51]. From structural connectivity in individual participants, group-level structural

connectivity was derived using a consensus approach that preserves the fiber length distribu-

tions of individual-level structural connectivity within and between hemispheres, respectively

[52]. For the edges selected by this consensus approach, connectivity strength and fiber length

were averaged across subjects to construct group-level matrices (see Fig 1A, right), where

averaging at such an edge was performed across subjects whose corresponding connectivity

strength at this edge was non-zero.

Long-timescale functional connectivity

As a metric of functional connectivity, we used the Pearson correlation coefficient between

regional BOLD time courses. The correlation coefficient was Fisher z-transformed except

when it was shown in connectivity matrices in figures. We refer to the functional connectivity

measured over the entire rs-fMRI run as long-timescale functional connectivity.

Time-resolved functional connectivity

With the metric of functional connectivity defined above, time-resolved functional connectiv-

ity was estimated using a tapered sliding window approach [7, 53]. The shape and the size of

tapered time window were specified in a similar way as in [41]. Specifically, a tapered time

window was constructed by convolving a rectangle of width = 47.52 s (66 TRs) with a Gaussian

kernel of σ = 6.48 s (9 TRs). The tapered window was moved toward the end of the BOLD time

series in steps of 2.16 s (3 TRs), which resulted in a total of 369 tapered windows.

Community detection and modularity

Communities or modules in networks of time-resolved functional connectivity were detected

through modularity maximization [54] using the Louvain algorithm [55]. To cope with nega-

tive functional connectivity, we employed a modularity quality function Q generalized for net-

works containing both positive and negative edge weights [56] as follows:

Q ¼
1

nþ

X

i;j

wþi;j � e
þ

i;j

� �
dMi ;Mj �

1

nþ þ n�

X

i;j

w�i;j � e
�

i;j

� �
dMi ;Mj ; ð1Þ
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where wþi;j ¼ wi;j and w�i;j ¼ 0 if the edge weight wi,j between nodes i and j is positive, and

wþi;j ¼ 0 and w�i;j ¼ � wi;j otherwise. δ in this equation is the Kronecker delta, where dMi ;Mj ¼ 1

if nodes i and j are within the same module and dMi;Mj ¼ 0 otherwise. The term e�i;j ¼ s
�
i s
�
j =n�,

where s�i ¼
P

jw
�
i;j and n� ¼

P
i;jw
�
i;j, denotes the expected density of positive or negative

weights in a network given a random null model. The first term in Eq (1) corresponds to a

standard form of the quality function in which negative edge weights are not taken into

account. Adding the second term allows to identify partitions in which negative edges are

located between modules [56]. As was argued in [56], we decided to add this term when identi-

fying partitions in functional brain networks since negatively correlated pairs of nodes are

indicative that these nodes reside in different communities.

Maximization of the modularity quality function Q was performed using the Matlab func-

tion community_louvain.m in the Brain Connectivity Toolbox (BCT; http://www.brain-

connectivity-toolbox.net) with the default setting of the resolution parameter γ = 1. Modularity

Fig 1. Workflow diagrams for model simulation and parameter search. (A) A schematic of simulating resting-state

cortical activity using a system of coupled phase oscillators, known as the Kuramoto model. Each oscillator was

assigned to a cortical node and was coupled based on connection strengths and fiber lengths of brain structural

connectivity. (B) A schematic of converting modeled cortical activity to modeled BOLD signal. (C) Workflow diagram

of model parameter search. 1. For all 28 × 16 parameter sets, long-timescale functional connectivity and the correlation

distribution of time-resolved functional connectivity over time (framed by rectangles in the panel 1) were computed

from the modeled BOLD signal and were compared to their empirical counterparts (10 simulation samples per each

parameter set). 2. For the parameter sets with better matches between the modeled and empirical data in the first stage,

community detection was performed on time-resolved functional connectivity to obtain its modules (100 simulation

samples per each parameter set). Then, time series of mean participation coefficient Pt and modularityQt were

computed and their SDs (framed by rectangles in the panel 2) were compared between the modeled and empirical

data. 3. For the parameter set yielding the best match between the modeled and empirical data in the second stage,

changes in functional connectivity across networks states (segregated and integrated states or high, middle, and low

modularity periods) were compared between the modeled and empirical data.

https://doi.org/10.1371/journal.pcbi.1006497.g001
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maximization was applied to the adjacency matrix of functional connectivity 100 times with

random initial conditions for each time window of time-resolved functional connectivity. The

maximum of the quality function across trials at time window t was regarded as the resulting

modularity score Qt and its accompanying network partition as its community assignment.

Network metrics for segregation and integration

Based on detected communities in networks, within-module degree z-score and participation

coefficient [57] were computed for each time window of time-resolved functional connectivity.

Consistent with previous work, these two network metrics were used for estimating segregated

and integrated states of functional connectivity [10].

In functional brain networks, the within-module degree z-score measures the extent to

which a node is functionally coupled with the other nodes within the same module, relative

to the weighted degrees of the other nodes within this module. The within-module degree z-
score of node i at time t is computed as

zi;t ¼
ki;Mi;t ;t � �kMi;t ;t

sMi;t ;t
; ð2Þ

where ki;Mi;t ;t denotes the weighted degree of node i at time t within its moduleMi,t, and �kMi;t ;t

and sMi;t ;t are the mean and SD of the nodal weighted degrees at time t within moduleMi,t.

This network metric was computed using the functionmodule_degree_zscore.m in the BCT

toolbox.

The participation coefficient for functional connectivity quantifies the extent to which a

node is functionally coupled with other nodes across diverse modules. The participation coeffi-

cient of node i at time t is given by

Pi;t ¼ 1 �
XNt

m¼1

kþi;m;t

kþi;t

� �2

; ð3Þ

where Nt is the number of detected modules at time t, kþi;m;t is the weighted degree of the posi-

tive edge weights of node i at time t within modulem, and kþi;t is the weighted degree of the

positive edge weights of node i at time t across all modules. This metric was computed using

the BCT function participation_coef_sign.m.

Estimation of network states

Segregated and integrated states. Segregated and integrated network states of functional

connectivity were estimated from a joint histogram of the within-module degree z-score zt and

the participation coefficient Pt over all nodes in the same manner as in [10, 33]. The joint his-

togram of these two network metrics at time t was constructed by summing the instances

of each value of zt and Pt in 100 equally defined bins along each axis (range: −5< zt< 5 and

0< Pt< 1). Estimation of the segregated and integrated states was performed by classifying

the joint histogram of each time window using k-means clustering with the number of clusters

set to two. Applying k-means clustering was repeated 500 times with random initial conditions

in each run in each individual. After the clustering, each time window was assigned to one of

the two estimated clusters, where the cluster having greater participation coefficients on aver-

age was regarded as the cluster of the integrated state.

High, middle, and low modularity periods. Network states of functional connectivity

were also defined using modularity Qt in the present study. In keeping with a previous study,
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each time window of time-resolved functional connectivity was classified into either of three

categories based on the intensity of modularity Qt [12] (high, middle, and low modularity peri-

ods). For the sake of computational efficiency, the high and low modularity periods of func-

tional connectivity were simply determined as periods of Qt greater than its upper tercile and

less than its lower tercile, respectively, over time in each run in each individual.

Modeling regional resting-state activity

Regional resting-state cortical activity was simulated using a system of coupled phase

oscillators, called the Kuramoto model [30, 31, 58, 59]. We selected the Kuramoto model to

simulate resting activity because it is simple enough to be tractable, while it can simulate syn-

chronization behavior in neural dynamics by taking into account delays between oscillators

[60] and, more importantly, can reproduce empirical findings about functional connectivity

in the resting brain by linking oscillators based on structural connectivity [20, 23, 61–63].

While several recent studies directly model slow BOLD fluctuations using the Kuramoto

model [9, 64, 65], we adopted the approach taken by [20, 23, 62, 63], where the Kuramoto

model is used for simulating fast oscillatory activity of neural populations in the gamma

frequency band (30–90 Hz) [66] and then the simulated neural activity is converted to mod-

eled BOLD time series using a hemodynamic model. Experimental studies have shown that

fluctuations in the gamma-band power of neural activity are closely related to spontaneous

BOLD signal [67–70].

The periodical dynamic behavior of node i in the network of coupled oscillators is described

using its phase θi(t), and it obeys the following differential equation:

dyi
dt
¼ 2pf þ k

XN

j¼1

Ci;j sin yjðt � ti;jÞ � yiðtÞ
� �

; ð4Þ

where f denotes the natural frequency, which was set to 60 Hz for all nodes [23, 63]. The sec-

ond term in this equation represents the influences from the other nodes that are structurally

connected to node i. In this term, N denotes the number of nodes, k is the global coupling con-

stant that controls the overall strength of the couplings, Ci,j is the strength of group-level struc-

tural connectivity between nodes i and j, where it was normalized so that the average of all

non-zero edge weights equals one, and τi,j is the time delay of interactions between nodes i and

j. The time delay was assumed to be proportional to the fiber length L between nodes i and j
such that τi,j = Li,j/v, where v represents the conduction velocity in myelinated fibers [20, 23,

61–63]. The way to specify the model parameters k and v are described later in Model parame-

ter search in Materials and methods. A schematic of model simulation is shown in Fig 1A.

In Eq (4), no noise was added to the system as in [61, 71]. Qualitatively similar results were

obtained even when the system noise was introduced to the model simulation. The main

results of this study with noise added are presented in Supporting information (S6 and S7

Figs). When the simulation was performed with noise, white Gaussian noise with σ = 1.25 rad/

s was added to the system as in [23, 63].

The differential equation in Eq (4) was numerically solved using the deterministic Heun

method for the simulation without noise and the stochastic Heun method for the simulation

with noise. The step size of the numerical integration was set to 0.2 ms. The initial value of

the phase was randomly drawn from the uniform distribution of the range [0, 2π]. The initial

history of the phase, which must be specified due to the presence of delays, was generated by

running simulations for a short duration without interactions [20, 61]. To remove transient

dynamics, the initial 20 s of data were discarded from the simulated phase time series.
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The global level of synchrony of the oscillator system can be evaluated using the order

parameter R(t):

RðtÞeiFðtÞ ¼
1

N

XN

n¼1

eiynðtÞ; ð5Þ

where R(t) quantifies the phase uniformity, which varies between 0 (fully incoherent) and 1

(fully synchronized), and F(t) describes the phase of the global ensemble of the oscillators.

We characterized the global dynamics of the system using the mean and the SD of the order

parameter R(t), which measure respectively the level of global synchrony and the level of global

metastability of the whole system [72, 73].

After transforming the phase time courses θn(t) into the simulated regional activities rn(t)
as rn(t) = sin(θn(t)) (n = 1, . . ., N) [20] and downsampling them to the sampling frequency of 1

kHz, these regional activity data were converted to the BOLD time courses using the Balloon/

Windkessel hemodynamic model [32] with the parameter setting used in [74] (Fig 1B). The

obtained modeled BOLD signal was preprocessed using the same band-pass filter that was

applied to the empirical rs-fMRI data. Additionally, the modeled data were downsampled to

make their TR identical to the empirical data, and the global signal was regressed out as was

performed for the empirical data. The number of time points in a single simulation sample

of the modeled data was set to be identical to that of a single run of the preprocessed empirical

rs-fMRI data (approximately 14 min). For each simulation sample of the modeled data, com-

putation of long-timescale and time-resolved functional connectivity, community detection,

calculation of the network metrics Qt, zt and Pt, and the estimation of the network states were

conducted in the same manner as for the empirical data.

In addition to relating to the empirical data, the magnitude of fluctuations in global network

topology of modeled functional connectivity was compared to that obtained from the model

simulations with surrogate structural connectivity. The surrogate connectivity data were con-

structed by randomly rewiring edges with preserving the degree and the weighted degree of

each node. The rewiring of edges was performed using the BCT function null_model_und_sign.
mwith the default setting. We kept generating surrogates until we obtained 100 random sam-

ples whose correlation coefficient between weighted-degree sequences of actual and surrogate

connection matrices was greater than 0.95. We also controlled the level of global synchrony of

simulated activity by performing model parameter search in each surrogate sample. Details of

this procedure are presented in the last paragraph of the next section Model parameter search.

Model parameter search

The global coupling constant k and the conduction velocity vwere searched so that long-time-

scale functional connectivity, time-resolved functional connectivity, and fluctuations in its

global network topology of the modeled data become close to those obtained from the empiri-

cal data. As in [20, 61, 62], the conduction velocity v was searched through changing the mean

time delay �t ¼ �L=v, where �L denotes the mean fiber length (�L ¼ 84:5 mm in our data). The

search for the model parameters k and �t was performed in two stages in the following manner.

First stage. In this stage, we ran the model simulation 10 times per each of a large number

of parameter sets and evaluated the similarity of the modeled and empirical data both in terms

of long-timescale and time-resolved functional connectivity (Fig 1C, panel 1). The global cou-

pling constant k was searched over the range of 2.5–70 in steps of 2.5, and the mean time delay

�t was changed from 2 to 17 ms in steps of 1 ms (this corresponds to changing the conduction

velocity v in the range of 42.3–5.0 m/s). The total number of parameter sets to be explored was

28 × 16 = 448.

Fluctuations in network topology of modeled functional connectivity
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The similarity of long-timescale functional connectivity was quantified using the correla-

tion coefficient between modeled and empirical long-timescale functional connectivity

weights, and was evaluated over all pairs of nodes [62], as well as over pairs of nodes with direct

structural connections [20]. These similarity scores were computed from modeled long-time-

scale functional connectivity averaged over all simulation samples and empirical long-time-

scale functional connectivity averaged over all rs-fMRI runs and subjects.

Comparison of modeled and empirical time-resolved functional connectivity was per-

formed using the distribution of the correlation coefficients of time-resolved connectivity itself

over time, which has been referred to as functional connectivity dynamics (FCD; [24]). The

correlation distributions were constructed by stacking the correlation coefficients of time-

resolved connectivity within each sample or run one by one. The correlations among time-

resolved connectivity within the width of time window were discarded from the resulting dis-

tributions. The (dis)similarity of the correlation distributions between the modeled and empir-

ical data was measured using the Kolmogorov-Smirnov (KS) distance.

We extracted a small number of parameter sets yielding better scores of these evaluation

measures and then further examined their reproducibility of empirical findings. Parameter

sets were extracted for further analyses if they exhibited the correlation coefficient of modeled

and empirical long-timescale functional connectivity with direct structural connections greater

than 0.33 and the KS distance of the correlation distributions of modeled and empirical time-

resolved functional connectivity over time less than 0.33.

Second stage. In the second stage, we newly generated 100 samples of simulation data for

each of the parameter sets extracted in the first stage. With these large number of simulation

samples, we examined the similarity of fluctuations in global network topology of modeled

and empirical functional connectivity (Fig 1C, panel 2).

We compared modeled and empirical fluctuations in time series of mean participation

coefficient Pt over nodes and modularity Qt. Mean Pt has been shown to be closely correlated

with transitions between the segregated and the integrated network states [10]. Qt was directly

used for determining the high, middle, and low modularity periods as explained above. The

similarity of modeled and empirical fluctuations in these global network metrics that are asso-

ciated with network states was quantified using the ratio of each metric’s SD over time within

each sample of the modeled data to that averaged across runs and subjects in the empirical

data.

We selected the parameter set yielding the highest similarity of modeled and empirical

fluctuations in network integration (mean Pt) and modularity (Qt). With the parameter set

selected, we compared network states between the modeled and empirical data as explained

below in the following section.

When comparing the magnitude of fluctuations in global network topology between the

actual and surrogate modeled data, we controlled the level of global synchrony by fitting the

mean of the order parameter through model parameter search. For the sake of computational

efficiency, we fixed the mean time delay �t to the same value as in the actual data and varied

the global coupling constant k for each surrogate connectivity data. The parameter k was

changed over the range of 2.5–70 in steps of 2.5 and picked up a value from which the mean of

the order parameter was the closest to that of the actual data.

Comparison of network states

After the model parameter search, we compared network states of functional connectivity (seg-

regated and integrated states or high, middle, and low modularity periods) between the mod-

eled and empirical data (Fig 1C, panel 3). In particular, we compared network metrics that

Fluctuations in network topology of modeled functional connectivity
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were used for determining network states (i.e., Qt, zt, and Pt), temporal metrics that character-

ize the dynamics of network states (transition probability and mean dwell time), and spatial

patterns of functional connectivity during each network state.

When comparing spatial patterns of modeled and empirical functional connectivity, we

investigated changes in functional connectivity across network states through the centroids of

time-resolved functional connectivity during each network state. Edge weights of a centroid

were computed as the median of time-resolved functional connectivity over time during the

corresponding network state within each sample or run [41]. Centroids of the empirical data

were averaged over all four rs-fMRI runs within each individual. With these centroids, we

examined whether empirical findings about the following two characteristic changes in func-

tional connectivity across network states, reported in [12, 33], are reproducible or not in the

modeled connectivity data.

• Changes in functional connectivity within/between task-positive and task-negative networks

[12]. Functional connectivity weights in each centroid were averaged within each pair of the

seven intrinsic networks in [50] and differences in them between network states (segregated

minus integrated, high modularity minus low modularity) were examined in terms of task-

positive and task-negative systems.

• Changes in the similarity between structural connectivity and functional connectivity [33].

The similarity was measured using the correlation coefficient between non-zero edge

weights of group-level structural connectivity and the centroid edge weights of functional

connectivity for each network state.

Results

Model parameter search

First stage. The correlation coefficients of modeled and empirical long-timescale func-

tional connectivity are shown in Fig 2A for all parameter sets explored. The maximum correla-

tions over parameter sets were 0.331 for all pairs of nodes and 0.400 for pairs of nodes with

direct structural connections, similar in magnitude to those observed in [62] and [20], respec-

tively. Similar heat map patterns were observed for both settings of the correlation coefficient.

A necessary condition for obtaining larger correlations was setting the global coupling con-

stant k near the middle of the range (22.5–57.5) of the k-axis and setting the mean time delay �t

to be greater than 6 ms.

Fig 2B shows the KS distance between the correlation distributions of modeled and empiri-

cal time-resolved functional connectivity over time. In a large portion of the parameter space,

the KS distance was close to one, which means that the correlation distributions were totally

different between the modeled and empirical data. Shorter KS distances, or more similar cor-

relation distributions, were obtained only from a limited number of parameter sets. Such

parameter sets traced a curve and a line in the heat map in Fig 2B. Among them, only the

curve-shaped cluster of the parameter sets overlapped with the area of significant similarity of

long-timescale functional connectivity shown in Fig 2A. Parameter sets associated with the

correlations in Fig 2A (right) greater than 0.33 and the KS distances in Fig 2B less than 0.33 are

shown in Fig 2C and were extracted from the large parameter space to further examine their

ability to reproduce empirical findings.

Before proceeding to the second stage, we checked the global synchrony and the global

metastability of resting-state cortical activity simulated with these extracted parameter

sets (Fig 2D). Within simulation samples of these parameter sets, the global synchrony was

Fluctuations in network topology of modeled functional connectivity
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0.353 ± 0.046 and the global metastability was 0.138 ± 0.005 (mean ± SD). The observed mod-

erate levels of the global synchrony, compared to that with other parameter sets (see the heat

map in Fig 2D left), indicates that oscillators in the system were either not fully coupled with

each other or randomly fluctuating in the model simulations with the extracted parameter sets.

Instead, the relatively large global metastability (see Fig 2D right) suggests that synchronization

and desynchronization coexist over the entire period of simulated activity generated from the

extracted parameter sets. Such metastable network dynamics have also been observed with the

parameter sets specified in previous studies for reproducing empirical long-timescale func-

tional connectivity [20, 62].

Second stage. The ratio of fluctuations in global network topology of modeled functional

connectivity to those of the empirical data is presented in Fig 3A. For both time series of mean

participation coefficient and modularity, fluctuations measured with their SDs in the modeled

data were on average closest to those observed in the empirical data when k = 55 and �t ¼ 12

ms. This parameter set is marked by a white arrow in the heat maps in Fig 3A. The SDs of both

mean participation coefficient and modularity with this parameter set were on average greater

than 80% of the magnitudes of the SDs of the empirical counterparts. In the following section,

the modeled data simulated with ðk; �tÞ ¼ ð55; 12Þ were used for comparison of changes in

modeled and empirical functional connectivity across network states. The selected values of

k and �t were in a physiologically plausible range. The global coupling constant k is not too

strong to cause the system to be unrealistically fully synchronized, as seen in Fig 2D. The mean

Fig 2. Model parameter search in the first stage. (A) Heat maps of the correlation coefficients of modeled and

empirical long-timescale functional connectivity. Left: correlations evaluated over all pairs of nodes. Right: correlations

evaluated over pairs of nodes with direct structural connections. (B) A heat map of the KS distance between the

correlation distributions of modeled and empirical time-resolved functional connectivity over time. (C) The parameter

sets extracted in the first stage based on the similarity of modeled and empirical long-timescale/time-resolved

functional connectivity (see text in for selection criteria). (D) Left: a heat map of the global synchrony (the mean of the

order parameter). Right: a heat map of the global metastability (the SD of the order parameter). The averages over the

10 simulation samples are presented. The parameter sets extracted in the first stage were outlined in these heat maps.

https://doi.org/10.1371/journal.pcbi.1006497.g002
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time delay �t corresponds to a conduction velocity 7.0 m/s, which places it within a realistic

range of the conduction velocity observed for the adult primate brain (around 5–20 m/s;

according to [75]).

The correlation coefficient of group-level empirical long-timescale functional connectivity

to group-level structural connectivity was 0.395, and which was indeed greater than the corre-

lation to modeled long-timescale functional connectivity averaged over 100 samples, 0.341,

with the selected parameter set ðk; �tÞ ¼ ð55; 12Þ (correlations evaluated over structurally con-

nected edges). However, the model with this parameter setting added some merits above anat-

omy by predicting the dynamics of functional connectivity more accurately than the cases

when the parameter set was specified to yield the prediction accuracy of the long-timescale

functional connectivity being above that yielded by structural connectivity. The prediction

accuracy of the long-timescale functional connectivity was slightly better than that obtained

Fig 3. Model parameter search in the second stage. (A) The ratio of the SDs of mean participation coefficient (top)

and modularity (bottom) of modeled time-resolved functional connectivity to those of the empirical ones. These ratios

were evaluated at the parameter sets extracted in the first stage and their averages over the 100 simulation samples are

presented in the heat maps. From the parameter set ðk; �tÞ ¼ ð55; 12Þ, pointed by a white arrow, we obtained the SDs

of mean participation coefficient and modularity that were on average closest to those observed in the empirical data.

This parameter set was selected for further comparison of the modeled and empirical data. (B) Distributions of the

ratio of modeled to empirical fluctuations in mean participation coefficient (top) and modularity (bottom). The

distributions obtained from simulations with the actual structural connectivity data are shown in light red and the

distributions from the surrogate data are shown in light gray.

https://doi.org/10.1371/journal.pcbi.1006497.g003
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from structural connectivity when ðk; �tÞ ¼ ð52:5; 13Þ and ðk; �tÞ ¼ ð45; 17Þ (correlation

coefficient of modeled and empirical long-timescale functional connectivity: 0.400 and 0.396,

respectively) (Fig 2A right). With these two parameter sets, KS distances between the correla-

tion distributions of modeled and empirical time-resolved functional connectivity over time

(Fig 2B) were not as good as that obtained from the parameter set selected in the second stage.

Specifying the parameter set as ðk; �tÞ ¼ ð55; 12Þ yielded a KS distance of 0.31, compared to

0.58 with ðk; �tÞ ¼ ð52:5; 13Þ and 0.95 with ðk; �tÞ ¼ ð45; 17Þ.

We then compared distributions of the ratio of modeled to empirical fluctuations in global

network topology between the actual and the surrogate structural connectivity data (Fig 3B).

The surrogate data were constructed by randomly rewiring actual edges with preserving the

nodal unweighted and weighted degrees and the level of global synchrony. In the surrogate

data, the ratio of modeled to empirical fluctuations was smaller than that in the actual data (see

Fig 3B), where the mean of the ratio distribution was 0.52 (mean participation coefficient) and

0.49 (modularity). This result suggests that the network organization of structural connectivity

contributed to the generation of fluctuations in global network topology of functional connec-

tivity at magnitudes that resembled those observed empirically.

It should be mentioned that the magnitude of fluctuations in global network topology did

not consistently decrease with a larger number of nodes. Details of our examination of the

magnitude of fluctuations with a larger number of nodes are presented in S2 File and S2 Fig.

Comparison of network states

Network metrics. With the parameter set selected in the second stage of model parameter

search, we compared network states of functional connectivity between the modeled and

empirical data. We first compared network metrics used for determining network states, i.e.,

modularity Qt, within-module degree z-score zt, and participation coefficient Pt. The metric Qt
averaged for each network state is shown in Fig 4A. Changing patterns in Qt over network

states were consistent in the modeled and empirical data. The magnitude of Qt was also in a

Fig 4. Network metrics averaged for each network state. (A) ModularityQt averaged for each network state within

each individual sample (model) or subject (empirical). (B) Joint histograms of within-module degree z-score zt and

participation coefficient Pt over all nodes averaged for each network state. The percent time is derived from joint

histograms of all samples (model) or subjects (empirical).

https://doi.org/10.1371/journal.pcbi.1006497.g004
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similar range in the modeled and empirical data—Qt averaged over all instances was 0.54 in

the modeled data and 0.51 in the empirical data. The mode and the median of the number of

detected modules by modularity maximization were three in all network states, both in the

modeled and empirical data.

In Fig 4B, we show joint histograms of zt and Pt over all nodes averaged for each network

state. The joint histograms had two peaks at around Pt = 0 and 0.5 both in the modeled and

empirical data. These two peaks were relatively less separable in the modeled data when clus-

tering time windows into the segregated and integrated states. Nevertheless, overall spatial pat-

terns in the joint histograms were common across the modeled and empirical data.

Temporal metrics. We then compared temporal metrics that characterize the transition

dynamics of network states. In Fig 5, we present transition probability of each pair of network

states, together with mean dwell time of each network state. This figure demonstrates that

empirical transition probability matrices and mean dwell time were highly reproducible in the

modeled data.

Spatial patterns: Within/Between task-positive and task-negative networks. Next, we

compared spatial patterns of functional connectivity during each network state between the

modeled and empirical data, with a particular focus here on changes in functional connectivity

within/between task-positive and task-negative networks.

In Fig 6A, we show long-timescale functional connectivity matrices averaged over samples

(model) or subjects (empirical). In the empirical data, we confirmed canonical spatial patterns

of functional connectivity, where positive (respectively, negative) edge weights were mainly

Fig 5. Temporal metrics of network states. The transition probability of each pair of network states is shown in the

corresponding entry of matrices. The mean dwell time of each network state is presented in a parenthesis in the

corresponding diagonal entry. Both temporal metrics are averaged over samples (model) or subjects (empirical).

https://doi.org/10.1371/journal.pcbi.1006497.g005
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found within (respectively, between) task-negative (CON, DMN, LIM) and task-positive

(DAN, VAN, SMN, VIS) networks. These patterns can also been seen in the empirical connec-

tivity matrix in S3A Fig, where nodes were sorted based on a partition that was obtained by

applying modularity maximization to group-level empirical long-timescale functional connec-

tivity (see S3B Fig for the partition). On the other hand, although moderate similarity scores

were obtained in Fig 2A, the canonical spatial patterns observed in the empirical data were less

evident in the modeled data. This discrepancy in the spatial patterns can be explained in part

Fig 6. Spatial patterns of functional connectivity with respect to task-positive and task-negative networks. (A)

Long-timescale functional connectivity of the modeled and empirical data (top: model; bottom: empirical). The

modeled connectivity was averaged over 100 samples simulated with the parameter set ðk; �tÞ ¼ ð55; 12Þ. The empirical

connectivity was averaged over 84 subjects. The black thick square lines in connectivity matrices indicate a partition

dissociating task-negative (CON, DMN, LMN) and task-positive (DAN, VAN, SMN, VIS) networks. (B) The similarity

of modeled and empirical centroids of time-resolved functional connectivity during each network state. The similarity

was assessed between modeled centroids in each simulation sample and empirical centroids averaged over subjects.

The similarity was quantified by the correlation coefficient of centroid’s functional connectivity weights over edges

with direct structural connections. (C) Between-state differences in centroid’s functional connectivity weights (left:

segregated state minus integrated state; right: high modularity period minus low modularity period; top: model;

bottom: empirical). The between-state differences of weights were averaged within each pair of the seven network

components in [50] and are presented in the matrices as t-scores if they were significant (p< 0.05, FDR corrected).

The yellow square lines show the partition separating task-negative and task-positive networks.

https://doi.org/10.1371/journal.pcbi.1006497.g006
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by the lack of reproducibility of the edge weight distributions within and between hemispheres

(S4 Fig). Edge weights within and between hemispheres were similarly distributed in the

empirical data, whereas positive (respectively, negative) edge weights were more frequently

found within (respectively, between) hemispheres in the modeled data.

The centroid of time-resolved functional connectivity during each network state exhibited

spatial connectivity patterns similar to those presented in Fig 6A when the centroids were aver-

aged over samples (model) or subjects (empirical). While underlying spatial patterns were rela-

tively common across network states, the contrast of spatial patterns was strengthened during

the segregated state and the high modularity period. These network states were associated with

greater global absolute functional connectivity both in the modeled and empirical data, com-

pared to the integrated state and the low modularity period. The global absolute functional

connectivity during the (segregated, integrated) state was (0.29 ± 0.07 [SD], 0.22 ± 0.01) in the

modeled data (Cohen’s d = 1.4) and (0.26 ± 0.04, 0.19 ± 0.02) in the empirical data (d = 2.1),

and that during the (high, low) modularity period was (0.27 ± 0.03, 0.22 ± 0.01) in the modeled

data (d = 2.3) and (0.24 ± 0.03, 0.18 ± 0.02) in the empirical data (d = 2.2). Spatial patterns in

the centroids have some variability over simulation samples, especially in the segregated state

and the high modularity period. Modeled individual-level centroids of these two network

states were less similar to empirical centroids averaged over subjects, compared to the inte-

grated state and the low modularity period (Fig 6B). The variability of spatial patterns has also

been reported in empirical individual-level centroids over subjects [33].

Then, to look into connectivity changes across network states in terms of task-positive and

task-negative networks, we computed between-state differences in centroid’s functional con-

nectivity weight averaged within each pair of the seven intrinsic network components [50].

We show t-scores of these between-state differences in Fig 6C to take into account the variabil-

ity of centroids over samples and subjects. We confirmed that functional connectivity during

the segregated state and the high modularity period of the empirical data increased within and

decreased between task-negative and task-positive networks, exhibiting two major subdivi-

sions as was reported in [12]. In contrast, this empirical finding was only partially reproducible

from the modeled data. Examples of reproducible changes observed during the segregated

state and the high modularity period were increased functional connectivity within the VAN +

SMN, between the DAN and the VAN + SMN, and within the VIS, and decreased functional

connectivity between the DMN and the VIS and between the LIM and the VAN. Non-repro-

ducible major features were increased functional connectivity within the task-negative net-

works, within the DAN, and between the VIS and the other task-positive networks, and

decreased functional connectivity between the VIS and the CON + LIM and between the

DMN and the task-positive networks other than the VIS. When the between-state differences

were evaluated without taking into account interhemispheric connections, some of these fea-

tures (increased functional connectivity within the DMN and between the CON and all the

task-negative networks including itself) were also observed in the modeled data (see S5 Fig).

However, the model did not reproduce the decoupling between task-positive and task-negative

systems during the segregated state and the high modularity period. The between-state differ-

ences averaged based on the partition derived from modularity maximization were presented

in S3C Fig. This figure also shows that increased/decreased dissociation of task-positive and

task-negative networks was not reproduced in the modeled data.

Spatial patterns: The similarity to structural connectivity. Lastly, we focused on the

similarity of functional connectivity to structural connectivity and compared changes in this

relationship across network states between the modeled and empirical data.

Fig 7 shows the similarity between structural connectivity and the centroid of time-resolved

functional connectivity during each network state. Compared to the segregated state and the
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high modularity period, functional connectivity during the integrated state and the low modu-

larity period exhibited greater similarity to structural connectivity in the empirical data (Fig 7,

right; d = 1.0 both for segregated/integrated and high/low modularity comparisons), as was

previously shown in [33]. While the magnitude of the similarity to structural connectivity in

the modeled data was overall greater than that observed in the empirical data, the changes in

the similarity to structural connectivity across network states was reproducible from the mod-

eled data (Fig 7, left). As observed in the empirical data, greater similarity to structural connec-

tivity was associated with the integrated state (d = 1.3, compared to the segregated state) and

with the low modularity period (d = 1.8, compared to the high modularity period) of modeled

functional connectivity.

Results with noise in simulations

The modeled data generated with noise in simulations yield main results similar to those

obtained without noise. We confirmed that similar results were observed in the ratio of mod-

eled to empirical fluctuations in global network topology (Fig 3B and S6A Fig), network met-

rics used for determining network states (Fig 4 and S6B and S6C Fig), temporal metrics of

network states (Fig 5 and S6D Fig), and spatial patterns of functional connectivity and their

changes across network states (Figs 6, 7 and S7 Fig).

Discussion

In this study, we evaluated fluctuations in global network topology of modeled functional con-

nectivity by comparing them with fluctuations in the empirical data from multiple perspec-

tives. For modeling of regional cortical activity, we used a network of phase oscillator models

coupled based on brain structural connectivity. After confirming moderate similarity of long-

timescale and time-resolved functional connectivity between the modeled and empirical data,

we fitted two free parameters of this network model, namely the global coupling constant and

Fig 7. Spatial patterns of functional connectivity with respect to its similarity to structural connectivity. The

similarity between group-level structural connectivity and the centroid of time-resolved functional connectivity during

each network state in each sample (model) or subject (empirical) was presented for the segregated and integrated states

(top) and the high, middle, and low modularity periods (bottom). The similarity for modeled functional connectivity is

shown in the left side and the similarity for empirical functional connectivity is shown in the right side.

https://doi.org/10.1371/journal.pcbi.1006497.g007
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the conduction velocity (or the mean time delay), so as to maximize the reproducibility of

empirical fluctuations in metrics quantifying network integration and modularity of functional

connectivity. With the parameter set selected, we showed that fluctuations in both mean par-

ticipation coefficient and modularity of modeled functional connectivity have magnitudes of

more than 80% of those observed in the empirical counterparts and that the stationary model

also reproduced empirical modularity and joint histogram of within-module degree z-score

and participation coefficient during each network state, as well as empirical transition proba-

bility and mean dwell time of network states. We then compared spatial patterns of functional

connectivity and their changes across network states, especially those reported in [12, 33],

between the modeled and empirical data. We demonstrated that the between-state changes in

functional connectivity with respect to the relationship of task-positive and task-negative net-

works were only partially reproducible, while the between-state changes in the similarity to

structural connectivity were more fully reproducible in our model setting.

By directly examining the reproducibility of fluctuations in global network topology, the

present study contributes to advance our understanding about the degree to which a stationary

model simulating resting-state activity can explain spatiotemporal patterns of empirical fluctu-

ations between segregated and integrated topology [10] or high and low modularity topology

[12]. Since such empirical fluctuations have received increasing attention because of recent

reports on their relationships to human cognition and behavior [10, 13, 14], there is presently

a strong need for modeling studies to explore their generative mechanisms by quantitatively

examining the predictability of computational models to the empirically observed topological

fluctuations. However, no direct comparison of modeled and empirical data has been made

in existing works that have studied modeled fluctuations in global network metrics of segrega-

tion and integration [8, 29]. In those studies, it is difficult to see how well the generated mod-

eled fluctuations in global network topology reflect the real empirical fluctuations. In many

other studies, comparison of modeled and empirical data has been performed in investigating

modeled long-timescale and time-resolved functional connectivity [9, 19–27], whereas these

investigations have not been extended so far to the fluctuations in global network metrics of

segregation and integration. In this study, we extended these two lines of existing studies

by quantitatively comparing modeled and empirical fluctuations in these global network met-

rics. Our comparison of the fluctuations revealed comprehensively the extent to which a sta-

tionary dynamic model of spontaneous brain activity can reproduce empirical features of

fluctuations in segregation and integration, and thereby provides new insights into generative

mechanisms of topological fluctuations that have been recently associated with human cogni-

tion and behavior.

In our comparison of fluctuations in global network topology between the modeled and

empirical data, we found both reproducible and non-reproducible features. Reproducible

features include the overall magnitude of fluctuations in mean participation coefficient [10]

and in modularity [11, 12], the quantity of metrics quantifying network integration and modu-

larity during each network state, temporal metrics characterizing state transition dynamics,

between-state changes in the relationship of functional connectivity to structural connectivity

[33], and a limited part of the between-state changes in functional connectivity within/between

task-positive and task-negative networks [12]. The fact that a number of properties about the

network-level fluctuations were shown to be reproducible suggests that, to some extent, the

modeled fluctuations in global network topology may reflect actual network-level dynamics in

the resting brain. On the other hand, we found that between-state changes in functional con-

nectivity occurring within/between task-positive and task-negative networks were overall not

well captured in the modeled data, even when the changes across network states were evalu-

ated by only taking into account the intra-hemispheric connections. Potential limiting factors
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include the lack of an explicit physiological model of context-dependent and transient dynam-

ics, and/or possible errors in estimation of brain structural connectivity [63]. These factors

may also diminish the relationship between modeled and empirical long-timescale functional

connectivity in this study as well as in previous studies [19–23]. These two issues will be further

discussed later.

The finding that the magnitudes of fluctuations in mean participation coefficient and mod-

ularity of the empirical data were preserved in our modeled data simulated with a time-invari-

ant dynamical system suggests that explicit modeling of non-stationary dynamics is not

necessarily required for an appearance of the fluctuations themselves. In very recent studies

by Glomb et al. [26, 27], another stationary dynamic model has also largely reproduced slow

alternations between more and less activated states of functional connectivity components

extracted by tensor decomposition. Interestingly, randomly rewired structural connectivity

patterns yielded greatly reduced fluctuations in this study, indicating that network patterns of

anatomical connections contribute in part to the emergence of such fluctuations. These find-

ings echo earlier observations concerning the emergence of additional (longer) time scales in

modeled functional connectivity, and a role of anatomical connections in shaping fluctuations

in functional couplings [18].

In contrast, the non-reproducible features that we observed in changes in functional con-

nectivity across network states suggest that additional factors, such as physiological mecha-

nisms that drive non-stationary dynamics and/or greater accuracy in mapping structural

connections, are needed to more fully replicate the observed fluctuations in network integra-

tion and modularity. In addition to the non-reproducible features, we also observed that the

magnitude of fluctuations in global network topology of the modeled data was slightly (on

average 10–20%) smaller than the magnitude in the empirical data (Fig 3B). Moreover, it

has also been reported that the stationary dynamic model in [27] cannot fully reproduce the

dynamics of modulations in time-resolved functional connectivity. Modeling of the non-sta-

tionarity may help in further improving the matching between the modeled and empirical data

in reproducing such fluctuations and modulations. In regard to limitations inherent in map-

ping structural connections (see also Methodological considerations), replacing structural

connectivity with directed effective connectivity [76] may solve the problem of fully reproduc-

ing the empirical spatial patterns. This approach has been taken by the recent studies [26, 27],

improving the reproducibility of spatial patterns associated with empirical fluctuations.

A promising approach for the purpose of incorporating the non-stationarity is to model the

modulation of neural gain mediated by neuromodulatory brain systems [77]. Shine and col-

league have shown that fluctuations in mean participation coefficient are correlated with

fluctuations in pupil diameter, a surrogate measure for the activity of neuromodulatory sys-

tems [78], in an empirical study [10] and that manipulating modeled neural gain gives rise to

abrupt changes in mean participation coefficient in a modeling study [29]. What has not been

achieved so far in this line of research is directly modeling the dynamics of neural gain control

and integrating this model component into the current modeling framework for the simula-

tion of resting-state cortical activity. Comparison of the modeled and empirical data with an

explicit modeling of gain control dynamics may provide a better understanding about the gen-

erative mechanism of empirical fluctuations in network integration and modularity.

Methodological considerations

The present study has several methodological limitations. First, while white matter tractography

using DWI data is a primary technique for estimating human structural connectivity, it can be

prone to inaccuracies [79, 80] especially for estimating connections between hemispheres [63].

Fluctuations in network topology of modeled functional connectivity
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In our study, errors in structural connectivity may have influenced the simulations of resting-

state cortical activity, as is suggested by our observation that the magnitude of fluctuations was

not accurately reproduced in the modeled data simulated with surrogate structural connectivity.

Furthermore, taking into account only intra-hemispheric functional connections for evaluating

patterns in changes between network states exhibited within-system coherence, but failed to

show between-system decoupling. Errors in estimating structural connections (and thus in

modeling functional connections) between hemispheres may have contributed to this negative

result. In spite of these limitations, we believe that the emergence of fluctuations in global net-

work topology of modeled functional connectivity were not a consequence of inaccuracies

inherent in tractography, since the fluctuations themselves have also been observed in modeled

data simulated with tract-tracing-based macaque structural connectivity retrieved from the

CoCoMac database [8, 29]. Nevertheless, future research is needed to compare the modeled

and empirical fluctuations without potential biases due to tractography, using e.g. the CoCoMac

structural connectivity data and empirical macaque rs-fMRI data.

Second, assessing the non-stationarity of coactivation patterns with rs-fMRI has its own lim-

itations. Existing studies have shown that the non-stationarity of (pairwise) functional connec-

tivity is difficult to be detected from an insufficient amount of rs-fMRI data [81] and is also

subject to potential confounds such as head movements and/or physiological noise [82]. Espe-

cially the latter issue is needed to be carefully addressed when quantifying the magnitude of

fluctuations in global network topology of empirical functional connectivity. We applied exten-

sive artifact reduction methods to the empirical rs-fMRI data employed in this study. With this

dataset, we previously demonstrated that no consistent relation was found in fluctuations in

mean participation coefficient to either head motion or respiration [33]. Therefore, effects of

artifacts on our evaluation of the magnitude of empirical fluctuations should be limited.

Third, we modeled the dynamics of regional cortical activity using rather simple Kuramoto

oscillators, in which the collective behavior of neural populations in each region was described

by a single phase variable. The reason for choosing the Kuramoto model is computational effi-

ciency to enable a systematic model parameter search with sufficient numbers of simulation

samples per each parameter set, especially for the analysis of fluctuations in global network

topology. Current computational resources do not allow replacing this model with more

complex models, such as a neural mass model employed in [8, 18, 19], in which local neural

dynamics are described by multiple nonlinear differential equations. In support of our model

choice, previous studies have demonstrated that the prediction accuracy of long-timescale

functional connectivity of the Kuramoto model is comparable to that of other major computa-

tional models including the above-mentioned neural mass model [23, 63].

Fourth, we used group-level structural connectivity for generating modeled resting-state

cortical activity, although it would be ideal to use individual structural connectivity instead to

conduct comparison of the modeled and empirical data within each individual. Resting-state

activity has recently been simulated using individual structural connectivity in e.g. [83] for

the purpose of exploring individual differences in cognition. Nevertheless, conducting all the

analyses in this study using individual structural connectivity is infeasible due to excessive

demands on computation time, especially for searching model parameters of every single sub-

ject. Performing the analyses in this study using individual structural connectivity for tens of

subjects may become feasible as computing power increases.

Future directions

Future work is needed to gain further insights into the generative mechanism of fluctuations

in global network topology of functional connectivity. An interesting direction of future
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research is to try to uncover local features of transient activity propagations underlying these

global network-level fluctuations. Revealing such local features may allow us to understand

how the global fluctuations in network integration and modularity emerge from sequences of

time-resolved regional activities over the entire brain. Propagations of regional activity can be

investigated using point-process analysis [84, 85]. Another important future direction is to

provide a mechanistic understanding of the global network-level fluctuations by manipulating

elements in the network model, for example, introducing lesions in structural connectivity

that wires local dynamic models [62, 86]. Examining the effects of manipulations on the out-

comes would contribute to elucidate model elements necessary for the emergence of fluctua-

tions in network integration and modularity. We will pursue these avenues of research in

future work, with continued emphasis on the generative aspects of fluctuations in global net-

work topology.

Supporting information

S1 Fig. Cortical parcellation produced by a subdivision of the Desikan-Killiany atlas. The

numbers placed on cortical parcels indicate the order of nodes in connectivity matrices in

main figures. The colors behind these numbers present the maximally-overlapped network

component of the seven network parcellation in [50].

(TIF)

S2 Fig. Distributions of the magnitude of fluctuations in global network metrics with a

larger number of nodes. The distributions obtained from 100 simulations with the number

of nodes N = 114 are shown in light red and the distributions from N = 219 are shown in dark

red (the overlapped areas are shown in red). Distributions for mean participation coefficient

are presented in the left panel and distributions for modularity are in the right panel.

(TIF)

S3 Fig. Spatial patterns of functional connectivity with a partition derived from empirical

long-timescale functional connectivity. (A) Long-timescale functional connectivity of the

modeled and empirical data (cf. Fig 6A), in which nodes are sorted based on the partition

shown in (B). This partition was obtained by applying modularity maximization to group-

level empirical long-timescale functional connectivity. The communities of nodes colored

by blue, light blue, and cyan overlap areas of the DMN, SMN, and VIS, respectively, in [50].

(C) Between-state differences in centroid’s functional connectivity weights (cf. Fig 6C). The

between-state differences of weights were averaged within each pair of modules in the partition

shown in (B).

(TIF)

S4 Fig. Edge weight distributions of long-timescale functional connectivity. Distributions

of edge weights within hemispheres are shown in red and those between hemispheres are

shown in blue (top: model; bottom: empirical).

(TIF)

S5 Fig. Between-state differences in centroid’s functional connectivity weights without tak-

ing into account interhemispheric connections. The differences between the segregated and

integrated states are shown on the left and those between the high and low modularity periods

are shown on the right (top: model; bottom: empirical) (cf. Fig 6C).

(TIF)

S6 Fig. Results with noise in simulations: The magnitude of fluctuations, network metrics,

and temporal metrics. (A) The ratio of modeled to empirical SD of mean participation
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coefficient (left) and modularity (right) (cf. Fig 3B). (B) Modularity during each network state

(cf. Fig 4A). (C) Joint histograms of within-module degree z-score and participation coefficient

during each network state (cf. Fig 4B). (D) Transition probability and mean dwell time of net-

work states (cf. Fig 5).

(TIF)

S7 Fig. Results with noise in simulations: Spatial patterns of functional connectivity and

their between-state changes. (A) Long-timescale functional connectivity (cf. Fig 6A). (B) The

similarity of modeled and empirical centroids of time-resolved functional connectivity during

each network state (cf. Fig 6B). (C) Between-state differences in centroid’s functional connec-

tivity weights (cf. Fig 6C). (D) The similarity between structural connectivity and the centroid

of time-resolved functional connectivity during each network state (cf. Fig 7).

(TIF)

S1 File. Numerical datasets that underlie all figures in the main text.

(XLSX)

S2 File. Examination of the magnitude of fluctuations with a larger number of nodes.

(PDF)
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58. Acebrón JA, Bonilla LL, Pérez Vicente CJ, Ritort F, Spigler R. The Kuramoto model: a simple paradigm

for synchronization phenomena. Rev Mod Phys. 2005; 77: 137–185. https://doi.org/10.1103/

RevModPhys.77.137

59. Rodrigues FA, Peron TKD, Ji P, Kurths J. The Kuramoto model in complex networks. Phys Rep. 2016;

610: 1–98. https://doi.org/10.1016/j.physrep.2015.10.008

60. Breakspear M, Heitmann S, Daffertshofer A. Generative models of cortical oscillations: neurobiological

implications of the Kuramoto model. Front Hum Neurosci. 2010; 4: 190. https://doi.org/10.3389/fnhum.

2010.00190 PMID: 21151358

61. Cabral J, Luckhoo H, Woolrich MW, Joensson M, Mohseni H, Baker A, et al. Exploring mechanisms of

spontaneous functional connectivity in MEG: how delayed network interactions lead to structured ampli-

tude envelopes of band-pass filtered oscillations. NeuroImage. 2014; 90: 423–435. https://doi.org/10.

1016/j.neuroimage.2013.11.047 PMID: 24321555

62. Váša F, Shanahan M, Hellyer PJ, Scott G, Cabral J, Leech R. Effects of lesions on synchrony and meta-

stability in cortical networks. NeuroImage. 2015; 118: 456–467. https://doi.org/10.1016/j.neuroimage.

2015.05.042 PMID: 26049146

63. Messé A, Rudrauf D, Benali H, Marrelec G. Relating structure and function in the human brain: relative

contributions of anatomy, stationary dynamics, and non-stationarities. PLOS Comput Biol. 2014; 10:

e1003530. https://doi.org/10.1371/journal.pcbi.1003530 PMID: 24651524

64. Cocchi L, Sale MV, Gollo LL, Bell PT, Nguyen VT, Zalesky A, et al. A hierarchy of timescales explains

distinct effects of local inhibition of primary visual cortex and frontal eye fields. eLife. 2016; 5: e15252.

https://doi.org/10.7554/eLife.15252 PMID: 27596931

65. Gollo LL, Roberts JA, Cocchi L. Mapping how local perturbations influence systems-level brain dynam-

ics. NeuroImage. 2017; 160: 97–112. https://doi.org/10.1016/j.neuroimage.2017.01.057 PMID:

28126550

66. Bartos M, Vida I, Jonas P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory

interneuron networks. Nat Rev Neurosci. 2007; 8: 45–56. https://doi.org/10.1038/nrn2044 PMID:

17180162

67. Nir Y, Fisch L, Mukamel R, Gelbard-Sagiv H, Arieli A, Fried I, et al. Coupling between neuronal firing

rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr Biol. 2007; 17: 1275–

1285. https://doi.org/10.1016/j.cub.2007.06.066 PMID: 17686438

Fluctuations in network topology of modeled functional connectivity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006497 September 25, 2018 26 / 27

https://doi.org/10.1523/JNEUROSCI.2630-15.2015
https://doi.org/10.1523/JNEUROSCI.2630-15.2015
http://www.ncbi.nlm.nih.gov/pubmed/26468195
https://doi.org/10.1016/j.biopsych.2015.10.005
https://doi.org/10.1016/j.biopsych.2015.10.005
http://www.ncbi.nlm.nih.gov/pubmed/26632269
https://doi.org/10.1016/j.jneumeth.2011.09.031
https://doi.org/10.1016/j.jneumeth.2011.09.031
http://www.ncbi.nlm.nih.gov/pubmed/22001222
https://doi.org/10.1152/jn.00338.2011
http://www.ncbi.nlm.nih.gov/pubmed/21653723
https://doi.org/10.1371/journal.pbio.0060159
http://www.ncbi.nlm.nih.gov/pubmed/18597554
https://doi.org/10.1016/j.neuron.2015.05.035
https://doi.org/10.1016/j.neuron.2015.05.035
http://www.ncbi.nlm.nih.gov/pubmed/26087168
https://doi.org/10.1016/j.neuroimage.2016.12.061
http://www.ncbi.nlm.nih.gov/pubmed/28034766
https://doi.org/10.1016/j.neuroimage.2011.03.069
http://www.ncbi.nlm.nih.gov/pubmed/21459148
https://doi.org/10.1038/nature03288
http://www.ncbi.nlm.nih.gov/pubmed/15729348
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/10.3389/fnhum.2010.00190
https://doi.org/10.3389/fnhum.2010.00190
http://www.ncbi.nlm.nih.gov/pubmed/21151358
https://doi.org/10.1016/j.neuroimage.2013.11.047
https://doi.org/10.1016/j.neuroimage.2013.11.047
http://www.ncbi.nlm.nih.gov/pubmed/24321555
https://doi.org/10.1016/j.neuroimage.2015.05.042
https://doi.org/10.1016/j.neuroimage.2015.05.042
http://www.ncbi.nlm.nih.gov/pubmed/26049146
https://doi.org/10.1371/journal.pcbi.1003530
http://www.ncbi.nlm.nih.gov/pubmed/24651524
https://doi.org/10.7554/eLife.15252
http://www.ncbi.nlm.nih.gov/pubmed/27596931
https://doi.org/10.1016/j.neuroimage.2017.01.057
http://www.ncbi.nlm.nih.gov/pubmed/28126550
https://doi.org/10.1038/nrn2044
http://www.ncbi.nlm.nih.gov/pubmed/17180162
https://doi.org/10.1016/j.cub.2007.06.066
http://www.ncbi.nlm.nih.gov/pubmed/17686438
https://doi.org/10.1371/journal.pcbi.1006497


68. Shmuel A, Leopold DA. Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey

visual cortex: implications for functional connectivity at rest. Hum Brain Mapp. 2008; 29: 751–761.

https://doi.org/10.1002/hbm.20580 PMID: 18465799

69. He BJ, Snyder AZ, Zempel JM, Smyth MD, Raichle ME. Electrophysiological correlates of the brain’s

intrinsic large-scale functional architecture. Proc Natl Acad Sci U S A. 2008; 105: 16039–16044. https://

doi.org/10.1073/pnas.0807010105 PMID: 18843113

70. Scholvinck ML, Maier A, Ye FQ, Duyn JH, Leopold DA. Neural basis of global resting-state fMRI activity.

Proc Natl Acad Sci U S A. 2010; 107: 10238–10243. https://doi.org/10.1073/pnas.0913110107 PMID:

20439733

71. Cabral J, Kringelbach ML, Deco G. Exploring the network dynamics underlying brain activity during rest.

Prog Neurobiol. 2014; 114: 102–131. https://doi.org/10.1016/j.pneurobio.2013.12.005 PMID: 24389385

72. Shanahan M. Metastable chimera states in community-structured oscillator networks. Chaos. 2010; 20:

013108. https://doi.org/10.1063/1.3305451 PMID: 20370263

73. Wildie M, Shanahan M. Metastability and chimera states in modular delay and pulse-coupled oscillator

networks. Chaos. 2012; 22: 043131. https://doi.org/10.1063/1.4766592 PMID: 23278066

74. Friston KJ, Harrison LM, Penny WD. Dynamic causal modelling. NeuroImage. 2003; 19: 1273–1302.

https://doi.org/10.1016/S1053-8119(03)00202-7 PMID: 12948688

75. Ghosh A, Rho Y, McIntosh AR, Kötter R, Jirsa VK. Noise during rest enables the exploration of the

brain’s dynamic repertoire. PLOS Comput Biol. 2008; 4: e1000196. https://doi.org/10.1371/journal.pcbi.

1000196 PMID: 18846206

76. Gilson M, Moreno-Bote R, Ponce-Alvarez A, Ritter P, Deco G. Estimation of directed effective connec-

tivity from fMRI functional connectivity hints at asymmetries of cortical connectome. PLOS Comput Biol.

2016; 12: e1004762. https://doi.org/10.1371/journal.pcbi.1004762 PMID: 26982185

77. Aston-Jones G, Cohen JD. An integrative theory of locus coeruleus-norepinephrine function: adaptive

gain and optimal performance. Annu Rev Neurosci. 2005; 28: 403–450. https://doi.org/10.1146/

annurev.neuro.28.061604.135709 PMID: 16022602

78. Joshi S, Li Y, Kalwani RM, Gold JI. Relationships between pupil diameter and neuronal activity in the

locus coeruleus, colliculi, and cingulate cortex. Neuron. 2016; 89: 221–234. https://doi.org/10.1016/j.

neuron.2015.11.028 PMID: 26711118
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