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A B S T R A C T

Diffusion imaging coupled with tractography algorithms allows researchers to image human white matter fiber
bundles in-vivo. These bundles are three-dimensional structures with shapes that change over time during the
course of development as well as in pathologic states. While most studies on white matter variability focus on
analysis of tissue properties estimated from the diffusion data, e.g. fractional anisotropy, the shape variability of
white matter fiber bundle is much less explored. In this paper, we present a set of tools for shape analysis of white
matter fiber bundles, namely: (1) a concise geometric model of bundle shapes; (2) a method for bundle regis-
tration between subjects; (3) a method for deformation estimation. Our framework is useful for analysis of shape
variability in white matter fiber bundles. We demonstrate our framework by applying our methods on two
datasets: one consisting of data for 6 normal adults and another consisting of data for 38 normal children of age 11
days to 8.5 years. We suggest a robust and reproducible method to measure changes in the shape of white matter
fiber bundles. We demonstrate how this method can be used to create a model to assess age-dependent changes in
the shape of specific fiber bundles. We derive such models for an ensemble of white matter fiber bundles on our
pediatric dataset and show that our results agree with normative human head and brain growth data. Creating
these models for a large pediatric longitudinal dataset may improve understanding of both normal development
and pathologic states and propose novel parameters for the examination of the pediatric brain.
Introduction

Advances in diffusion magnetic resonance imaging (dMRI) and trac-
tography methods now allow in-vivo high resolution imaging of human
white matter (WM) and extraction of the brain connectome - a large
collection of WM fibers. As increasing numbers of dMRI datasets become
publicly available, much of the recent work in the neuroscientific com-
munity revolves around analysis of specific WM bundles - subsets of fi-
bers - with regards to population comparison, lateralization and
neurological disorders. Most studies of WM variability focus on analysis
of tissue properties estimated by different values extracted from the
diffusion data, such as Fractional Anisotropy. The shape variability of
white matter, however, is much less studied. The paucity of investigation
into white matter shape is due to several factors. It is in part due to the
in this work. LG oversaw the method
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fact that the shape of fiber bundles is irregular and complex, and in part
because there are still ongoing debates in the community regarding the
ambiguous nature of tractography methods used to extract these struc-
tures. WM fiber bundles are essentially three-dimensional geometric
structures with origination and termination regions, anatomically con-
strained by adjacent brain structures. Their geometric shape has been
confirmed by postmortem brain anatomy studies, e.g. Mori et al., 2017,
and atlases have been constructed that determine both the common
shape and the common location of different fiber bundles, Wakana et al.,
2004. At present, shape morphology of WM fiber bundles over the course
of normal development and pathologic states represents an unexplored
area of investigation that may yield new insights into normal and path-
ologic brain development. Specifically, the lack of normative data in the
pediatric population has constrained efforts to create normal atlases of
development and KY oversaw the imaging data collection.
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pediatric brain development using any imaging modality, including WM
imaging. This paper aims to address this gap and presents a framework of
computational geometry tools focused on analyzing the shape variability
of WM fiber bundles. We present: (1) a concise and novel geometric
model for fiber bundle shapes, (2) spatial correspondence mapping be-
tween regions of interest on homologous fiber bundles, (3) registration of
fiber bundles across subjects in bundle space, and (4) bundle deformation
estimation. To demonstrate the abilities of our framework, we apply our
methods to a unique cross-sectional dataset of 38 healthy children aged
0–8 years and show how it can be used to model the shape change of WM
fiber bundles among subjects of different age. Applying the proposed
methods to a large longitudinal pediatric dataset, may provide a novel set
of parameters for monitoring pediatric brain development.

Background

Geometric model of WM fiber bundles
As imaging resolution advances and the extracted connectomes

become more and more dense, a need for concise representation of these
fiber sets is pressing. In recent years, there have been several efforts to
address this need. A method using hierarchical clustering to compress
fiber sets by combining analysis in the image space with analysis in fiber
space was presented by Guevara et al. (2011). Garyfallidis et al., 2012,
presented QuickBundles - a method that reduces fiber clusters to a single
centroid streamline. Colby et al., 2012, presented a centralized stream-
line model for a fiber bundle by assuming that they are tube-like struc-
tures with cross-sectional uniformity. Corouge et al., 2004, proposed a
clustering scheme that uses the similarity of adjacent curves to group sets
of curves to bundles. In this representation, fiber bundles are modeled by
a shape prototype swept along a space trajectory. Gori et al., 2016,
proposed a weighted prototype scheme for fiber bundles in which several
’prototype’ fibers are chosen among the streamlines to represent groups
of similar streamlines. Alexandroni et al., 2016, compared hierarchical
clustering methods with different distance metrics to the Coresets
approach (Agarwal et al., 2005), and showed the superiority of the latter
in fiber set reduction. The underlying goal of all these methods is data
compression - they aim to eliminate redundancies and find the set of
representative fibers of a bundle. This reduction is lossy - in the sense that
the fine-detailed geometric shape information is lost in the final repre-
sentation. In contrast to those methods, Durrleman et al., 2011, proposed
using the framework of currents as a metric for analysis of white matter
fiber bundles. In this representation, a fiber is represented as a path in-
tegral over a vector field which keeps the geometric information of the
bundle. The compression ratio that this representation achieves varies
with the parameters chosen which control the approximation error. They
measure the compression ratio by the number of ’momenta’ - 3D vectors
(represented by 6 floating point numbers - three for location and three for
direction) and report 85% compression ratio on average. This is not a
fixed-length representation as the number of momenta varies with the
size of the dataset and the complexity of the geometry of the fiber bundle.
Their work achieves impressive results for registration and variability
analysis. Some efforts are also aimed at characterizing the shape of fiber
bundles: Batchelor et al., 2006, used fundamental geometric invariants
such as curvature and torsion to estimate an ’average’ shape for several
human fiber bundles. Similarly to Durrleman et al., 2011, our geometric
model achieves data compression without compromising the complete-
ness of geometry information. It creates a concise representation of the
shape of the fiber bundles, allowing shape analysis at a fine scale as well
as bundle registration and deformation estimation. Furthermore, our
model achieves fixed-length representation, regardless of the number of
subjects in the dataset, or the number of fibers in the analyzed bundles.
Our geometric model for a fiber bundle consists of a fixed number, X, of
3D Seed Points (three floating point numbers per Seed Point), where X is
determined by the user according to how fine the analysis should be.
Since the length and complexity of WM fiber bundles varies greatly
within subjects as well as across populations, the ability to adjust the
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scope of the analysis is essential and useful for different investigations. In
the experiments we show in this paper, we chose X¼ 340. The number of
nodes in fiber bundles varies, but is usually in the several thousands - thus
our representation constitutes a compression ratio of well over 90% on
average. The fact that our representation is of fixed length renders it
useful for many different types of group analyses and algorithms.

Registration
Most available methods for group analysis of white matter still rely on

whole-brain image-based registration, such as Smith et al., 2006, and
Ashburner and Friston, 2000. These methods find the optimal diffeo-
morphic registration by minimizing cost-functions defined on voxels. In
dMRI processing, scalar diffusivity measures, such as Fractional Anisot-
ropy (FA) values serve as the basis for registration, e.g. in Groeschel et al.
(2014). The whole-brain registration approach, however, has several
challenges when the data analyzed is of brains with ’non-typical’
gray-level appearance, such as a presence of a mass lesion in the form of a
tumor, vascular malformation, abscess, hemorrhage, or brain deforma-
tion that might be associated with hydrocephalus. In these cases, since
this form of registration relies on the full brain volume for alignment, the
abnormal area may cause the registration to fail. Low intensity or poor
contrast may also lead to poor results. Additionally, these methods rely
on the assumption that the shape variability of white matter fiber bundles
is reflected in the variability of diffusivity measures. Most diffusivity
measures, however, rely on the diffusion tensor model, which possesses a
single major orientation. As a result, this model cannot adequately
describe white matter regions that contain two or more differently ori-
ented fiber bundles within the same voxel (crossing, diverging, or kissing
fibers) leading to incorrect estimations of diffusion measures and fiber
directions Pierpaoli et al., 2001, Alexander et al., 2002, Descoteaux et al.,
2009. Thus image-based registration doesn't necessarily correctly align
the neural pathways. Sotiras et al., 2013, provides an excellent review of
methods used for registration in the medical imaging domain. In this
work the authors conclude that registration becomes more robust even
under the existence of large deformations once landmarks are established.
In dMRI imaging such landmarks are the white matter fiber bundles.
Indeed, recently there have been much research in this direction -
registration in the space of bundles (the anatomical landmarks), rather
than in image space. In these methods, the fiber bundles extracted from
the dMRI data are treated as stand-alone shapes, and the goal for the
registration is to align these shapes across subjects, independently of the
tractography algorithms used for their estimation. In Garyfallidis et al.
(2015), the authors presented the Streamline-based Linear Registration
framework that registers homologous bundles by minimizing a cost
function based on local and global geometric properties of the bundles,
without using any geometric model for the bundles themselves. They
define a distance metric between two bundles that accounts for all the
points on the fibers (streamlines) to drive the registration. O'Donnell
et al., 2012, proposed to directly register whole tractograms without the
indirect step of whole-volume image registration by minimizing a loss
function computed only from a random subset of streamline coordinates.
Olivetti et al., 2016, find an optimal correspondence between streamlines
of one tractogram to streamlines in another in a similar manner to the
graph matching problem. Siless et al., 2017, proposed a way to cluster
tractography streamlines based on their neighboring anatomical struc-
tures, rather than their coordinates, achieving a registration free analysis
method across subjects. Zvitia et al., 2010, use Gaussian Mixture Models
to represent fiber sets, which are registered by maximizing their corre-
lation ratio. Fishbaugh et al., 2014, proposed a framework based on
currents to model and register fiber bundles. The work presented in this
paper falls within this category of bundle-space registration.

Methods

Diffusion MRI allows imaging the neuroanatomy of white matter
structures in-vivo. When comparing the anatomy and function of these
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structures across populations, it is important to establish spatial corre-
spondence between different sets of tractography data. Such correspon-
dence maps drive the registration (i.e. non-rigid spatial alignment)
between the different fiber bundles, from which the shape deformation
can be estimated. In this section, we present the full framework for shape
analysis of white matter bundles. This framework consists of methods for:
(a) creating a geometric model of a WM fiber bundle (section Geometric
model of a fiber bundle); (b) fine-scale correspondence mapping between
bundles of different subjects (section Fine-scale correspondence mapping
between fiber bundles of different subjects); (c) free-form registration for
bundle alignment (section Fiber bundle registration); and (d) shape
deformation estimation (section Shape deformation estimation). Each
step is built upon the previous steps.

Fiber bundle representation and pre-processing

Following tractography processing as elaborated in section Data for
experiments, the data for each bundle is represented as a fiber bundle - a
set of N fibers ffigNi¼1, each fiber consisting ofMi points in ℝ3 ½xj; yj; zj�Mi

j¼1.

Each fiber is then resampled to L points, where L is chosen by the user.
For longer fiber bundles with elaborate geometry a higher L should be
chosen (e.g. L ¼ 100), while for shorter bundles a smaller L suffices. In
this work we chose L ¼ 60. Following the resampling, fibers are flipped
such that all ½x1; y1; z1� points are on one end of the bundle and all
½xL; yL; zL� points are at another end of the bundle. Following the resam-
pling, we calculate the Centerline - an ’average’ fiber that follows the
curvature of the bundle. The Centerline is a curve consisting of L points
½Cxj ;Cyj ;Czj �Lj¼1 where each point is an average of all the points with the

same index on all the fibers, calculated as follows:
½Cxj ;Cyj ;Czj � ¼ 1

N

PN
n¼1½xj; yj; zj�.

Geometric model of a fiber bundle

Homologous fiber bundles of different subjects may have different
shape both in the macro-level and in fine-level details: they may differ in
the number of fibers, average length of the fibers, cross-sectional areas
along the bundle, the distribution of the fibers within a cross-section etc.
We suggest a model that represents the variable geometry of such bun-
dles in a way that is both concise and allows for correspondence mapping
between regions of interest on bundles from different subjects. The
fundamental observation that guides our model is that the geometry of a
bundle has two components - along the fibers and across the fibers. Along
the fibers length, the bundle has many fibers aligned in roughly the same
direction. At every point along this main direction, a cross-section con-
tains nodes of all the fibers at that point. Our framework models these
two components. Our representation for a fiber bundle is a set of Seed
Points fcigCi¼1. This is a fixed-length representation, since all bundles are
represented using the same number of Seed Points. Moreover, the rep-
resentation is consistent, such that Seed Point cAi of bundle A and Seed
Point cBi on bundle B are located in corresponding regions on their
respective bundles. Alg. 1 outlines the process for calculating the repre-
sentation. As the model essentially creates a division of a bundle into
regions, we refer to this process as fiber bundle parcellation. The input to
the parcellation algorithm is the fiber bundle, with its fibers resampled
and flipped as previously explained. The output is a set of C Seed Points
that capture the geometry of the fiber bundle. This is achieved by the
following steps:

1. The Centerline that follows the mean curvature of the fiber bundle
is calculated (as explained in section Fiber bundle representation
and pre-processing).

2. K uniformly spaced (according to geodesic distance) locations
along the Centerline are chosen fcigKi¼1 (K is a user-chosen
parameter according to the desired parcellation resolution).
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3. The local Centerline direction ci! is calculated at each location.
4. Two points above and below ci along ci! , namely cþi and c�i are

found. These points are chosen such that cþi < c�iþ1 and c�i > cþi�1,
effectively creating non-overlapping ranges along the centerline.

5. Two planes perpendicular to the Centerline direction are defined
using the local centerline direction ci! as normal and the points cþi
and cþi respectively.

6. The area between these two planes defines a ’slab’. An example of
a ’slab’ can be seen in Fig. 2 (b). All the nodes on the fibers that are
contained within such ’slab’ create a point-cloud shaped roughly
as a short cylinder with an elliptical cross-section.

7. All nodes in the slab are projected to a cross-sectional plane in the
middle of the cylinder to get a 2D ellipsoid. The axes of this
ellipsoid are calculated.

8. The elliptical slab is then partitioned into S equal-angle slices.
9. The radius of each slice is determined by the node farthest from

the corresponding centerline point for that slice.
10. P Seed Points are placed on each slice, equally spaced, along a

radial line passing in the middle of the slice. This creates a total of
S� P Seed Points per cross-section.

The model is controlled by four parameters: L - the number of nodes
per fiber (defining the distance between nodes on the fiber), K - number
of cross-sections per bundle (defining the number of ’slabs' per fiber
bundle, K<L), S - number of slices per cross-section (defining the number
of angular slices each ’slab’ is cut into) and P - number of Seed Points per
slice (defining the number of clusters in each slice). These can be set by
the user based on the required correspondence mapping accuracy. A
different set of parameters results in a different parcellation scheme, with
the resulting cluster locations visually consistent across subjects. Thus for
datasets produced by higher resolution white matter imaging methods,
or when finer detailed correspondence mapping is required the user may
choose to use finer resolution for the shape analysis - requiring more Seed
Points. When a coarser analysis is sufficient the user may choose pa-
rameters that yield less Seed Points in the model. In this experiment we
chose the following parameters: K ¼ 20 (number of cross-sections), S ¼ 8
(number of slices per cross-section) and P¼ 2 (number of Seed Points per
slice). This choice of parameters yields 8� 2 ¼ 16 SeedPoints per cross-
section, resulting in a total ð20� 16Þ þ 20 ¼ 340 Seed Points, thus 340
clusters. For a finer or coarser analysis this number can be set by the user.
An overview of the parcellation process for the left thalamic radiation
(LTR) fiber bundle is shown in Fig. 1. The bundle itself is shown on the
left. The middle figure shows the locations of the Seed Points, each Seed
Point is a centroid of a corresponding cluster. Note that the Seed Points
capture the spatial ’spread’ of the bundle at each location along the
Centerline. The figure on the right shows the result of the parcellation.
Points on the fibers are grouped together in clusters based on their spatial
location and local geometry using K-nearest-neighbors algorithm. Each
cluster is shown in a different color.

In the illustration in Fig. 2a we show the fibers (in light gray) with
three cross-sectional ’slabs', each with s ¼ 8 slices and P ¼ 2 Seed Points.
Fig. 2b shows an example of one such ’slab’ (viewed from above), the
nodes belonging to the slab and the assigned Seed Points. This slab was
partitioned to S¼ 8 slices of angle 45� each. This partitioning was chosen
empirically as an optimal partitioning to capture the fine geometry var-
iations in the dataset while keeping the number of slices as small as
possible. The nodes (points on the fibers) belonging to each slice are
shown in different color. The radial extent of each slice determines the
placement of Seed Points (black squares on the figure) in that slice. The
central Seed Point is placed at the centroid of all the nodes belonging to
the slab.

Algorithm 1. Fiber Bundle Parcellation.



Fig. 1. Parcellation overview. (left) Left Thalamic Radiation (LTR) fiber bundle; (middle) Seed Points representation models the geometry of the bundle. Each node on the bundle is
assigned to one of the SeedPoints using a nearest-neighbor approach; (right) parcellated LTR bundle - each color represents a different cluster. Cluster location is visually consistent across
subjects in a given dataset.
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Fine-scale correspondence mapping between fiber bundles of different
subjects

Given a group of fiber bundles from a dataset of subjects, we are
interested in finding the spatial correspondence map between these
bundles, i.e. a mapping function that indicates the location of a chosen
region of interest (ROI) on bundles from different subjects. Such corre-
spondence map can be used for registration and shape deformation
Fig. 2. Seed Points placement procedure. The calculated model captures the nature of the fib
with centerline (thick gray curve) and Seed Points at three cross-sections. Right - top-view on
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estimation (as we do in the rest of this paper). It can also be used for
shape analysis or fine-grained tissue properties analysis (similar to the
profile analysis in Yeatman et al., 2012, only in a muchmore fine-grained
manner, as the correspondences established relate much smaller regions
of interest, rather than cross-sections of the bundle). To create the cor-
respondence map for a group of given fiber bundles, we first need to
define a reference bundle. A reference can either be a bundle generated
by an atlas, or one of the bundles within a given dataset. In this work we
arbitrarily chose a fiber bundle of one subject within each dataset as a
reference. The parcellation of the reference bundle informs the parcellation
of other bundles in the set, such that the ROIs on all fiber bundles will
spatially map to the location of the ROIs on the reference. A synthetic
reference can also be generated. It is important to note, however, that
since the reference bundle serves as a template to which the rest of the
bundles are registered, this bundle must have ’sufficient’ structure to
generate non-null Seed Points model. In this context ’sufficient’ means
that each cross-section should have at least S*P number of points. Within
this minor constraint, the choice of the reference does not influence the
results. Furthermore, this constraint is rarely not satisfied since the
number of fibers generated by tractography algorithms is on the order of
several hundreds to a few thousands. For the adult dataset, we randomly
chose one of the subjects to serve as reference. For the pediatric dataset,
since we were interested in the shape change of fiber bundles among the
subjects of different ages, we chose the youngest subject (11 days old) to
serve as a reference. The mapping process between a reference bundle
er bundle shape along the fibers and across the fibers. Left - fiber bundle (thin gray curves)
one cross-sectional ’slab’.
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and a target bundle is explained in Alg. 1, executing the ’else’ statements
in lines 11–12. The difference between the reference parcellation and the
parcellation of the rest of the bundles in a dataset is in the processing of
the cross-sectional ’slabs': the axes of the ellipse model for the slab (the
ellipse axes that were calculated on the reference bundle) are multiplied
by a rotation matrix (RotMat, line 11) formed between the local center-
line direction on the moving bundle and the corresponding local
centerline direction on the reference bundle. This matrix is calculated by
finding a rotation needed to align the two vectors. This operation
essentially aligns the axes of the cross sectional ellipse on the moving
bundle to its corresponding ellipse on the reference bundle. Following
this alignment the algorithm proceeds as before, generating Seed Points.
Since all fiber bundles are parcellated similarly, mapping between ROIs is
a simple index query operation - given an ROI with index j on the
reference bundle, its corresponding ROI on other bundles in the dataset
has the same index j.

Fiber bundle registration

One of the major contributions of this work is a method for regis-
tration of fiber bundles from different subjects in bundle space. This is
enabled bymodeling the shape of a fiber bundle by a set of Seed Points, as
explained in section Geometric model of a fiber bundle. The Seed Points
calculated during the parcellation process constitute the correspondence
mapping between the different bundles, as explained in section Fine-
scale correspondence mapping between fiber bundles of different sub-
jects. Once such a correspondence is established, we choose a subset of
these points as Control points to drive the registration. One of the bundles
in the dataset is arbitrarily chosen as reference, as discussed in section
Fine-scale correspondence mapping between fiber bundles of different
subjects. Reference bundle is considered as fixed bundle and all other
bundles in the set are considered asmoving bundles and will be registered
to the fixed bundle. Considering the geometric structure of a fiber bundle,
the most significant deformation sources are elongation/shortening
along the fibers length and radial expansion/reduction. To account for
both these major deformation sources, we propose a two-step registration
process whereby the first step consists of registration along the fibers
length and the second step consists of the radial registration. Section
Free-form deformation elaborates on the exact process of free-form
deformation. An overview of the registration process is as follows:

1. All bundles are preprocessed by (a) resampling all fibers to have equal
length; (b) flipping fibers if necessary so that all fibers have the same
origin and the same destination. 2; (c) all bundles are zero-centered.

2. Following the preprocessing, a Centerline for each bundle is calcu-
lated as explained in section Fiber bundle representation and pre-
processing.

3. A rigid transformation is calculated between to Centerline of the
moving bundle and the fixed bundle. This step consists of finding a
rotation matrix, R, and translation vector, T, as explained in Besl and
McKay (1992).3

4. The rotation and translation found in the previous step are applied to
all fibers in the moving bundle. This results in a very rough alignment
between the moving and fixed bundles.
2 We denote the origin of fiber i, ½x1; y1; z1� of ffig, as Oi. We denote the termination
coordinate of fiber i, ½xL; yL; zL� of ffig, as Ti. A fiber is flipped if kO1 � Oik > kO1 � Tik.

3 Since the Centerlines of the moving and fixed bundles have the same number of nodes,
L, we are looking for the optimal rotation matrix (R) and translation vector (T) between
two sets of corresponding 3D points. To do this, we first calculate the centroids, CM and
CF, for the moving and fixed Centerlines, respectively. We then use Singular Value
Decomposition of the covariance matrix of the two centered Centerlines to find the
rotation matrix, R, as follows:

H ¼ PL
i¼1ðCenterlineiM � Ci

MÞðCenterlineiF � Ci
FÞT ; ½U; S;V � ¼ SVDðHÞ. The rotation matrix

is then simply R ¼ VUT . The translation is T ¼ �R� CM þ CF.
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5. All bundles are parcellated as described in section Geometric model of
a fiber bundle (for the reference) and Fine-scale correspondence
mapping between fiber bundles of different subjects (for the moving
bundles).

6. Coarse registration along the fibers length is applied by choosing
Centerline Seed Points as Control Points for the free-form registration.

7. Finer ’wireframe’ registration is applied by choosing peripheral Seed
Points as Control Points for the free-form registration.

8. Post-processing - all fibers are lightly smoothed using a 3-point
moving average approach and resampled to keep a fixed distance
between points. This step is necessary to avoid spurious fiber curves
after the registration.

Fig. 3 illustrates the control points for the two-step registration. The
gray control points are taken from the centerline of the bundle and black
control points are on the outer perimeter of the bundle.

Free-form deformation
Free-form deformation (FFD) by Sederberg et al. (1986), is a method

for deforming the shape of an object by transforming the
three-dimensional space in which the object is embedded. In this work,
B-spline FFD is considered. A 3D grid of regularly spaced b-spline control
points is constructed to encapsulate a moving bundle. A set of corre-
sponding points on the reference bundle and on the moving bundle is
chosen from our previously found Seed Points. Using quasi-newton
optimization we find the deformation of the grid that minimizes the
euclidean distance between the correspondence points. The 3D grid is
refined during this process to allow better accuracy by doubling the
number of points in each dimension. The result of this step is a
four-dimensional deformation tensor: for each control point, it contains
the displacement (scalar value) and the direction of the displacement (3D
vector). Subsequently, we calculate the displacement direction and
magnitude for each point of the moving bundle fibers by interpolating
between the closest control points. This results in a registration of the
moving bundle to the reference bundle.

Registration accuracy quantification
To quantify registration accuracy we use the Intersection over Union

(IoU) measure, also known as Jaccard similarity coefficient (or Jaccard
index) Jaccard, 1901. IoU is a normalized measure of overlap and is
defined as the size of the intersection divided by the size of the union of

two sample sets: JðA;BÞ ¼ jA\Bj
jA[Bj ¼ jA\Bj

jAjþjBj�jA\Bj. The index is 1 when there is

a perfect overlap and 0 when there is no overlap. We use this index to
quantitatively verify registration accuracy and compare our results to
whole-brain image-based registration methods - see section Comparison
with nonlinear whole-brain registration (WBR). Since our data is
three-dimensional, jA \ Bj is derived by counting the number of jointly
occupied voxels in a 3D grid of a bounding box containing both A and B,
while jA [ Bj is derived by counting the number of singly and doubly
occupied voxels in that bounding box, that is voxels occupied by nodes
from either A or B or both. To calculate IoU between two bundles A and
B, we simply divide between the two counts. We use this measure to
compare our registration results to nonlinear whole-brain registration
transformation applied on specific fiber bundles (see section Comparison
with nonlinear whole-brain registration (WBR)).

Comparison with nonlinear whole-brain registration (WBR)
To validate our novel fiber-bundle model-based registration (we refer

to our method as MBR hereafter), we compare its accuracy with the
commonly-used whole-brain image-based nonlinear registration based
on FSL (Andersson et al., 2010) (we refer to this method as WBR here-
after). We randomly generated 35 subject pairs (with no duplicates) from
dataset 2 (see section Dataset 2 - normal pediatric subjects), with the first
subject in the pair being the fixed subject and the second subject in the
pair being themoving subject. For each subject we examined an ensemble



Fig. 3. Seed Points used in two-step registration. Example of control points used for
the two-step registration on callosum forceps major fiber bundle. Control points for the
initial coarse registration along the fibers length step are in gray (diamond shaped),
control points used for the fine-registration step are in black (dot shaped).
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of eight white matter fiber bundles that were identified using AFQ (see
section White matter fiber bundle identification for details), namely
callosum forceps major and minor, left and right corticospinal tracts, left
and right inferior fronto-occipital fasciculi and left and right inferior
longitudinal fasciculi. The goal of this experiment was to measure the
normalized overlap between the registered fiber bundles (IoU, similarly
to 23), and to compare it between the two methods. For WBR, we aligned
the whole-brain FA maps of the moving subject to the fixed subject in
each subject-pair using FMRIB Non-linear Image Registration Tool
(FNIRT) (Andersson et al., 2010). First, FMRIB Linear Image Registration
Tool 31,32 was used to compute the initial affine transformation of the
two FA maps, which was then fed to FNIRT to compute the nonlinear
transformation. The resulting nonlinear transformation was applied to
the individual fiber bundles of the moving subject using applywarp (part
of FMRIB Software Library) to obtain the moved fiber bundles. The spe-
cific parameters used for WBR can be found in Supplementary Material
section Parameters used for WBR. For MBR, we directly registered the
fiber bundles of the moving subject to the homologous fiber bundles of
the fixed subject. The results of this analysis are shown in section Com-
parison with nonlinear whole-brain registration (WBR).
Shape deformation estimation

The registration process moves all the points on the moving bundle
such that the bundle is aligned with the reference bundle. This process
does not change the number or the order of nodes on the fibers. Thus, the
total deformation-per-node can be calculated by simply taking the L2
norm of the euclidean distance between the location of the node pre- and
post-registration. In the developmental dataset, the growth along the fi-
bers length is the major contributor to the total deformation, with the
radial growth contributing a smaller component. It is also possible to
calculate the deformation components in different orientations from the
data. However, in this work we focus on the total absolute deformation,
regardless of direction.

Data for experiments

We demonstrate the methods above on two very different dMRI
datasets: (1) we show how a geometric model is created for left thalamic
radiation fiber bundle of six adult normal subjects, and how this allows
fine-scale correspondence mapping on these bundles (see section Dataset
1 - normal adult subjects for imaging and data acquisition and pre-
processing details); (2) we demonstrate the full pipeline starting from
the creation of the geometric model and through estimating shape
changes on an ensemble of WM fiber bundles: the occipital and frontal
radiation of the corpus callosum - the forceps major (C_FMajor) and
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forceps minor (C_FMinor) respectively, the inferior fronto-occipital
fasciculus (IFOF) and the corticospinal tract (CST) - on a cohort of 38
normal pediatric subjects. The first dataset was acquired for research
purposes and is thus of high quality and resolution. This small dataset is
used primarily to demonstrate the model. The second dataset was
initially acquired for clinical purposes to rule out presence of patholog-
ical conditions, and is thus of less good quality. Nevertheless, our
methods are applicable and work well on both types of data. For the
second dataset, we also show how the shape of white matter fiber bun-
dles changes among subjects of different age and suggest an approxi-
mated model for shape change of the analyzed bundles during normal
development.

Dataset 1 - normal adult subjects

Magnetic resonance imaging diffusion weighted data of six healthy
male adults (age 37–39) were acquired at Stanford's Center for Cognitive
and Neurobiological Imaging using a 3-T General Electric Discovery 750
MRI equipped with a 32-channel head coil (Nova Medical). Data
collection procedures were approved by the Stanford University Insti-
tutional Review Board. Written consent was collected from each partic-
ipant. DWI images were measured at 1.5 mm3 uniform spatial resolution
with 96 different diffusion directions with b value of 2000 s=mm2

(TE ¼ 96.8 ms). The images were corrected for spatial distortions due to
B0 field inhomogeneity and motion corrected. Fiber tracking was per-
formed using MRtrix by Tournier et al. (2012).

Dataset 2 - normal pediatric subjects

Subjects
The subjects chosen for this study were collected from a clinical

database of normally developing children with age ranging from 11 days
to 8 years. All scans were obtained in the course of normal clinical care
based on concerns of the treating physicians and retrospectively
reviewed after approval by the Stanford University institutional review
board (protocol 28674). Scans were read as normal by the attending
pediatric neuroradiologist. Examples of reasons MRI scans were obtained
in the normal cohort included: Family history of aneurysm or vascular
malformations, sinus disease, peri-orbital dermoid, facial hemangioma,
ear infection, and benign strabismus without orbital or intracranial ab-
normality. The charts of all patients with normal MRIs were interrogated
to confirm the absence of any disease states. The total number of subjects
was 38, with 21 females and 17 males. The age and gender distributions
can be seen in Fig. 4.

MRI image acquisition and pre-processing
As part of their clinical evaluation, children were scanned at the

Lucile Packard Childrens Hospital at Stanford. Children younger than 3
months of age were scanned using a swaddle-and-feed method; children
older than 3 months of age were sedated under general anesthesia; and
sedation for children aged 6–8 years was based on individual maturity
level and ability to tolerate the MRI exam. High resolution T1-weighted
(3D SPGR; TR ¼ 7.75 ms; TE ¼ 3.47 ms; 1 mm isotropic voxels;
orientation ¼ axial) and diffusion-weighted images were obtained at 3T
(GE MR750 Discovery; GE Healthcare, Waukesha, WI, USA) using an 8-
channel head coil.

Diffusion data were acquired with a twice-refocused GRAPPA DT-EPI
sequence (TR ¼ 4–6 s depending on slice coverage, acquisition
matrix ¼ 128 � 128, acceleration factor ¼ 3, NEX ¼ 3, slice
thickness¼ 3 mm, gap¼ 0 mm, FOV¼ 20 cm) using a b-value of 1000 s/
mm2 sampling along 25 isotropically distributed diffusion directions.
Five T2-weighted (b ¼ 0) images were interspersed throughout the
acquisition. To reconstruct the data, we used an automated tailored
reconstruction software that selected the best GRAPPA and ghost
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calibration weights; performed 3D rigid-body realignment with impor-
tance weighting; and employed phase correction and complex averaging
to lower Rician noise and to reduce phase artifacts (see Holdsworth et al.,
2012 for details). In addition to the 3D realignment procedure, we
quantified the degree of translational head motion in each scan by
assessing the magnitude (in voxels) of motion correction required for
each volume along the x-y-z- plane. We chose to remove volumes if
translational movement exceeded 2 voxels in any direction. No scan was
determined to be unusable due to excessive motion as more than 30% of
the total number of volumes were maintained in all children. Using a
rigid body transformation, diffusion images were registered via the b0
image to the T1-weighted image that had been manually aligned to a
canonical AC-PC orientation. For each voxel, a tensor model was fitted
using a standard least-square algorithm. Images depicting fractional
anisotropy, mean diffusivity, radial diffusivity and axial diffusivity were
generated based on the eigenvalue decomposition of the diffusion tensor
Pierpaoli and Basser, 1996. Pre-processing was implemented in MATLAB
(MathWorks, Natwick, MI) and the analysis tools are publicly available as
part of the Vistasoft git repository, VistaLab, 2012.

White matter fiber bundle identification
Automated Fiber Quantification, Yeatman et al., 2012, was used to

track and segment cerebral white matter pathways in each subjects
native space. In brief, AFQ consists of three main processing steps: i)
whole-brain tractography, ii) automatic pathway segmentation, iii)
automatic pathway refinement and cleaning. First, a deterministic
streamlines tracking algorithm Mori et al., 1999, was used to estimate a
whole-brain connectome of fiber bundles. To balance the inclusion of less
mature WM regions in very young infants while minimizing the inclusion
of GM and partial volume effects, the default tracking parameters were
adjusted based on FA values utilized in previous dMRI studies of neonates
Rose et al., 2014, de Brune et al., 2011: The tracking algorithm was
seeded with a white matter mask defined as all the voxels with FA value
above 0.15. Tracking proceeded in all directions and stopped when FA
dropped below 0.10 or when the angle between the last path segment
and next step direction was greater than 30. Secondly, bundle segmen-
tation was performed using a multiple waypoint ROI procedure in which
each fiber from the whole-brain connectome was assigned to a specific
fiber group if it passed through two ROIs that defined the trajectory of the
fiber group, see Wakana et al., 2007. Because ROIs were defined on a
template in MNI space, non-linear transformation, see Friston and Ash-
burner, 2004, was applied to register these ROIs into each individuals
native space.

We defined the central portion of the fiber bundle by clipping each
streamline to the portion that spans between the two waypoint ROIs and
resampling each fiber bundle to 30 equidistant nodes (see Fig. 5 for
example). The final cleaning of the bundle was done by computing the
robust mean (3-dimensional Gaussian covariance of the sample points)
and removing fibers that were either more than 4 standard deviations
above the mean fiber length or that were located more 5 standard de-
viations away from the core of the fiber bundle. For each child, fiber
renderings for the forceps major (C_FMajor), forceps minor (C_FMinor),
corticospinal tract (CST), inferior fronto-occipital fasciculus (IFOF) and
inferior longitudinal fasciculus (ILF) were visually inspected to ensure
that each bundle conformed to anatomical norms prior to any statistical/
shape analyses.
Fig. 4. Age and gender distribution of Dataset 2. Dataset 2 consisted of 38 clinically nor
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Experiments and results

We first validate the proposed novel methods by comparing the re-
sults of our registration to nonlinear whole-brain image-based registra-
tion based on FA (in section Comparison with nonlinear whole-brain
registration (WBR)). We then demonstrate the different parts of our
framework on the two datasets we elaborated on in section Data for
experiments (sections Geometric Model, Parcellation, Registration,
Deformation mapping). Finally, we present a possible application for
estimating the shape change of white matter bundles across different
ages (section Shape deformation model for fiber bundles) (see Fig. 12).

Comparison with nonlinear whole-brain registration (WBR)

In this experiment we quantitatively assessed the accuracy of our
novel fiber bundle model-based registration (MBR) and compared it with
the commonly-used whole-brain image-based nonlinear registration
based on FSL (Andersson et al., 2010) (WBR). Fig. 6 shows the overlap
between the moved bundle and the fixed bundle, as quantified by the IoU
index, for each method. Visual inspection of both subplots indicates that
our MBR method produces a higher overlap than WBR on all fiber bun-
dles considered in this analysis, except for the callosum forceps minor.
T-tests confirmed that our overlap values were significantly higher than
those of WBR for all bundles except for FMinor (corrected for multiple
comparison, see supplementary table 1).

Geometric model

Fig. 7 shows an example of the left inferior fronto-occipital fasciculus
of three different subjects, each with its Seed Points. Corresponding Seed
Points are plotted with the same color. Visual inspection of the figure
allows to qualitatively validate that despite the obvious shape differences
between the fiber bundles, both in scale and finer shape details, Seed
Points of the same color are located in roughly the same relative location
on the bundles, rendering the correspondence mapping correct. The
specific values for the four parameters of the geometric model that were
used for all experiments in this paper are outlined in section Geometric
model of a ber bundle.

Parcellation

Fig. 8 shows an example of a bundle parcellation on the left thalamic
radiation fiber bundle of three normal adult subjects from dataset 1.
Corresponding regions are plotted in the same color across subjects. For
ease of visual inspection, we zoom-in to the central portion of the bundle.
Even though the shape of the bundles differs from subject to subject, the
correspondence is highly reliable in the majority of the bundle. In the
regions of the endpoints, due to their irregular nature, there are some
inconsistencies. However, it has become standard practice in white
matter variability analysis to use only the central portion of the bundles
(see e. g Yeatman et al., 2012) since the diffusion signal towards the
endpoints (either on the cortex or in subcortical structures) is much less
reliable than the diffusion signal in the central portion of the bundle.
Some tractography tools enable ’clipping’ the extracted fiber bundles to
the region between the placed seeds, thus avoiding the endpoints region
altogether. We demonstrate the method on clipped fiber bundles from
mal children, with 21 females and 17 males, of age 11 days old through 8.5 years old.



Fig. 5. Bundle ROI placement for clipping endpoints on four different bundles. Location of ROIs is indicated by yellow dotted line on each fiber bundle. This procedure was part of the
pre-processing prior to the geometry modeling.

Fig. 6. Comparison to FA-based nonlinear Whole-brain based registration. (a) IoU (Intersection over Union) for eight bundles across 35 subject pairs - comparison of WBR and MBR.
The plot shows mean values across all 35 pairs are shown in bold lines� one standard error of the mean. (b) Boxplot of the differences in IoU between MBR and WBR. The central mark
(red) represents the median, the edges of the box (blue) are the 25th and 75th percentiles, the whiskers extend to the min and max values. Difference values above 0 indicate that MBR
performed better.

Fig. 7. Left inferior fronto-occipital fasciculus of three different subjects with a subset of calculated Seed Points. Seed Points corresponding to the same relative location on the
different bundles are plotted using the same color. Visual inspection of the Seed Points proves that the correspondence mapping is correct. (a) 2.8 months old; (b) 2 years old; (c) 7.8 years
old.

Fig. 8. Parcellated Left Thalamic Radiation fiber bundle of three representative subjects from dataset 1. Corresponding regions have the same color across all subjects. In this
experiment, no clipping was performed. As a result, it can be seen that while the correspondence mapping at the endpoints has errors, the mapping at the core area of the bundles (shown
on the right of each figure) is correct.
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dataset 2 below. Fig. 9 shows the resulting parcellation of the left inferior
fronto-occipital fasciculus of six different representative subjects from
dataset 2. Corresponding ROIs are displayed in the same color. Visual
inspection of the images reveals quite satisfactory results - even though
473
the differences between the shapes are significant, regions at corre-
sponding locations share the same color, meaning that they were mapped
correctly.
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Registration

Registration is key tool in medical imaging analysis. It is central to
understanding and modeling the shape variability of anatomy structures
across subjects. We performed registration between four sets of homol-
ogous fiber bundles - callosum forceps major, callosum forcepsminor, left
IFOF and left corticospinal tract of 38 different subjects. The registration
of fiber bundles is evaluated qualitatively by visually inspecting the
alignment and quantitatively by comparison to nonlinear whole-brain
registration - see section Comparison with nonlinear whole-brain regis-
tration (WBR). Fig. 10 shows examples of the registration results we
obtain on the callosum forceps major (first row) and left inferior fronto-
occipital fasciculus (second row) of an 11 days old infant to a 7.8 years
old child. On the left (a) and (d), reference bundles are shown in blue and
the ”moving” bundle is shown in yellow. The middle figures (b) and (e)
show the two bundles after the registration. The right figures (c) and (f)
show the ”moving” bundle before and after the registration, in purple and
yellow colors respectively. As can be seen, after the registration, the
”moving” bundle becomes similar in shape and size to the reference
bundle.

Deformation mapping

To better understand how the shape of a fiber bundle changes be-
tween subjects of different age, we calculate the total deformation for
each node on the fibers. Fig. 11 shows the left IFOF in four different
representative subjects from dataset 2, with the nodes of the bundles
color-coded according to the magnitude of deformation they undergo
during development, with dark red being the highest deformation (about
15 mm) and dark blue being the lowest deformation (0 mm). In this
experiment, the left-IFOF of the youngest subject was used as reference
and it can be seen that, as expected, the deformation grows with age.

Shape deformation model for fiber bundles

Regular measurements of head circumference are standard of care for
children as abnormalities in head growth can allow for early identifica-
tion of disease states such as hydrocephalus, Barbier et al., 2013. Normal
head growth during early development can be estimated by measuring
head circumference and can be approximated for the first several years of
life by a logarithmic curve, indicating that the growth is very fast during
the first two years of life and gradually slowing until about age 5, when
the head size is approximately as in adulthood. It is driven by brain
growth which pushes the skull out as the skull fuses. The additional
growth is smaller as the skull growth thicker in the following years.
Similarly, the same trend can be extracted from our bundle deformation
measures. Fig. 12 shows the growth rate (or deformation) as a function of
age for four different bundles extracted from the diffusion data of all 38
subjects in dataset 2: callosum forceps major and minor (a) and (b), left
corticospinal tract (c) and left inferior fronto-occipital fasciculi (d). As
can be seen in the figures, the deformation increases with age. To find
whether this increase is best described with a linear or a logarithmic
model, we performed 10-fold cross-validation for the deformation data of
each bundle. For each bundle, we plot both the best linear and the best
Fig. 9. Parcellated left inferior fronto-occipital fasciculi with clipped endpoints of 6 di
subjects. Due to the clipping, the endpoints of the fiber bundles are not part of the parcellatio
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logarithmic model. Logarithmic fitted models are plotted with dashed
lines and the linear models are plotted with dotted lines. The equations
for the logarithmic and linear models are presented in the caption along
with the mean squared error (MSE) for each model. The logarithmic
model fits the data better than a linear model for all bundles considered
except for the left corticospinal tract, for which the linear model achieves
a slightly lower MSE. It is important to note that our pediatric dataset is
cross-sectional; therefore, the observed shape deformation cannot solely
be associated with age - inter-subject variabilities are also present.
Nevertheless, we describe the derivation of the such model primarily to
illustrate how our methods can be used to obtain an age-dependent shape
deformation model for specific fiber bundles. To generate a model useful
for clinical purposes (similarly to the clinically used head circumference
measure), a large longitudinal dataset would be required, where several
time-points exist per subject. This is further elaborated upon in the dis-
cussion section.

Discussion

The shape variability of brain structures extracted from T1-weighted
data has been studied and modeled extensively. Regional changes in
cortical thickness have been linked to a variety of disorders, including
schizophrenia, bipolar disorder, depression, Attention Deficit Hyperac-
tivity Disorder (ADHD) and autism spectrum disorders, see e.g. Rimol
et al., 2012, Goldman et al., 2012 and Wang et al., 2016. T1 imaging of
Alzheimer's patients reveals overall volume loss and shape changes in
specific brain structures, such as the hippocampus, amygdala, the ven-
tricles and other regions, see e.g. Cuingnet et al., 2011, Ferrarini et al.,
2006, as well as assymetry in several brain structures, see Wachinger
et al., 2016. Shape descriptors of these structures have been used in
machine learning algorithms for disease classification, see e.g. Glozman
et al., 2016, Shi et al., 2015. The shape variability of the white matter
fiber bundles, however, is much less studied. Our work aims to close this
gap by providing a set of tools for such analysis. The main goal of this
work was to generate a simple and flexible framework for shape analysis
of fiber bundles. We demonstrate the utility of such framework by
generating an approximation to the normative model of white matter
shape change across pediatric subjects. We utilize the 3D shape infor-
mation of the fiber bundle to create a region-to-region map between fiber
bundles of different subjects in a given dataset. The geometric model we
propose is flexible and adjustable according to the required analysis -
finer or coarser Seed Points placement schemes can be defined. It also has
the advantage of a fixed-length representation which makes it suitable
for applications of group analysis with deep learning architectures, most
of which expect a fixed-size input, as well as more traditional machine
learning algorithms. By adjusting only four parameters the user controls
the resolution of the model and determines the fineness of the analysis.
The methods presented are particularly useful for fiber bundles where the
geometry has a major component along the fibers length - e.g. bundles
that are relatively long (compared to their cross-sectional ’footprint’).
Fiber bundles that have many branches, such as superior longitudinal
fasciculus, or bundles that have very short fibers, such as the uncinate
fasciculus will not be a suitable candidate for the geometric model we
suggest. The geometry of most other major pathways, however, will be
fferent subjects from dataset 2. Corresponding regions have the same color across all
n scheme, yielding a more accurate correspondence.



Fig. 10. Registration examples. Left image in each row shows the moving bundle (in yellow) and the reference bundle (in blue). Middle image in each line shows the two bundles
registered. Right image in each line shows the moving bundle before registration (in yellow) and after registration (in purple). Top row shows an example of callosum forceps major fiber
bundle registered between a 8.5 year old female and a 4 months old female. Bottom row shows an example of the left inferior fronto-occipital fasciculus (IFOF) registered between an 8.5
year old female and a 21 days old female. In both rows the background is the T1-image of the reference 8.5 year old child, axial plane on the top row and sagittal plane on the bottom row.

Fig. 11. Shape deformation maps for left inferior fronto-occipital fasciculus color-coded by the amount of deformation in each node. (a) 21 days old; (b) 2.8 months old; (c) 4.4
months old; (d) 20 months old; (e) 7.8 years old. Blue colors indicate low deformation, red colors indicate high deformation as shown in the colorbar on top. Besides the obvious growth in
size, there are also subtle changes in shape that are detected and measured.

T. Glozman et al. NeuroImage 167 (2018) 466–477
well captured with our geometric model. A limitation of our model is that
it does not take into considerations ’twisting’ of fibers around the central
axis, i.e. fiber bundles that have a ’drill-like’ structure. Based on what is
known about fiber bundle organization in the brain, the occurrence of
such structures is not very likely: the seminal paper by Bullmore and
Sporns (2012), provides evidence that ”many aspects of brain organiza-
tion can be accounted for by … minimizing the wiring cost involved in
anatomically connecting neurons.… governed by laws of conservation of
time, space and material…”. The brain has limited volume, bound by the
skull size. Thus, fiber bundles must travel between brain areas by the
optimal path to minimize the volume they occupy. ”Swirling” fibers are
unlikely, as they would violate this basic principle. Our framework es-
tablishes correspondences between regions, enabling accurate localiza-
tion not only for shape variability analysis, but also for comparison of
tissue properties. Many studies have confirmed that tissue properties,
such as fractional anisotropy, change along the profile of the fiber
bundle. Group analysis of FA changes along bundle profiles were found to
be associated with a large number of neurologic conditions including
Alzheimer's disease, Parkinson's disease, age related cognitive decline,
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Krabbe disease, and delayed neuropsychological effects of treatment of
pediatric lymphoid malignancies among others, see Leitner et al., 2015,
Feldman et al., 2012a, 2012b, Poretti et al., 2016, Chan et al., 2016,
Schuitema et al., 2013 and Teipel et al., 2012. These analyses were
enabled by tools such as AFQ by Yeatman et al. (2012), where the authors
show how FA profile comparison can be affected by misalignment of the
homologous bundles. They propose a simple procedure to roughly align
homologous bundles prior to estimation of the FA profile and show that
even this rough alignment significantly reduces confounds caused by
crossing fibers, and partial voluming with neighboring structures. Our
framework allows mapping corresponding regions on fiber bundles in a
much finer scale - thus opening the opportunity of performing a more
accurate analyses of localized tissue properties group comparison and
detecting differences that might be easily missed in bundle-averaged or
even profile-averaged analysis. We plan to explore this direction in future
work. We demonstrated that our methods can be applied to both a high
quality research dataset and a clinical dataset, which, by nature of the
acquisition protocol, is of lower quality. Our framework extends to a
variety of other diffusion models and tractography approaches that



Fig. 12. Fiber bundle deformation curve data and fitted logarithmic and linear curve for four different pathways. (a) Callosum forceps major; Logarithmic model: y ¼ 0:74þ
0:15⋅logðxÞ: (MSE ¼ 0.008). Linear model: y ¼ 0:71þ 0:02⋅x: (MSE ¼ 0.01). (b) Callosum forceps minor; Logarithmic model: y ¼ 0:66þ 0:15⋅logðxÞ: (MSE ¼ 0.011). Linear model: y ¼
0:63þ 0:02⋅x: (MSE ¼ 0.014). (c) left corticospinal; Logarithmic model: y ¼ 0:63þ 0:12⋅logðxÞ: (MSE ¼ 0.008). Linear model: y ¼ 0:59þ 0:02⋅x: (MSE ¼ 0.007). (d) left inferior fronto-
occipital; Logarithmic model: y ¼ 0:7þ 0:19⋅logðxÞ: (MSE ¼ 0.005). Linear model: y ¼ 0:68þ 0:02⋅x: (MSE ¼ 0.006).
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output a similar set of fiber bundles with elongated geometry. We
showed that our registration method produces a higher overlap for spe-
cific bundles compared to whole-brain FA image-based nonlinear regis-
tration. The better registration accuracy of MBR as indicated by higher
overlap values is due to the local nature of the applied transformation. As
mentioned in sections 2.4 and 2.4.1, in our method the Seed Points on the
fiber bundles drive the free-form deformation, which allows a very fine
local alignment between the fixed and moving bundles. WBR on the other
hand creates a deformation field based on voxels intensity values of the
3D volume image - resulting in a less accurate local registration. Our
registration and deformation estimation tools create a quantifiable
measure for shape difference in the space of fiber bundles. This metric
may serve as an additional tool for assessing both individual variability
(e.g. in brain lateralization and longitudinal studies) and population
variability (e.g. for estimating the normative shape variability per fiber
bundle in a cohort of subjects. We have demonstrated in this study how to
use our framework to generate an atlas of fiber bundle shape change
across different ages for individual white matter pathways. In Singh et al.
(2016), the authors show that using a cross-sectional data may estimate a
wrong longitudinal effect, since in such dataset, the inter-subject differ-
ences are not taken into account. The pediatric dataset we are using is
cross-sectional and thus the age-dependent changes we presented need
further verification using large-scale longitudinal data. Nevertheless, to
the best of our knowledge, this work is the first to suggest a method to
derive a model for shape deformation growth for white matter fiber
bundles. Applying our analysis to longitudinal data would yield norma-
tive growth curves for individual fiber bundles - a measurement may
possibly have clinical potential. In future work, we therefore plan to use
our framework to assess typical and pathologic development. Further
analysis may focus on evaluating recovery following neurosurgical pro-
cedures such as tumor extraction or hydrocephalus shunt installation. All
the code developed for this work is freely available at https://github.
com/tanyagl/FiberBundleShapeAnalysis.
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