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Abstract

A central goal of cognitive neuroscience is to decode human brain activity—that is, to infer

mental processes from observed patterns of whole-brain activation. Previous decoding

efforts have focused on classifying brain activity into a small set of discrete cognitive states.

To attain maximal utility, a decoding framework must be open-ended, systematic, and con-

text-sensitive—that is, capable of interpreting numerous brain states, presented in arbitrary

combinations, in light of prior information. Here we take steps towards this objective by intro-

ducing a probabilistic decoding framework based on a novel topic model—Generalized Cor-

respondence Latent Dirichlet Allocation—that learns latent topics from a database of over

11,000 published fMRI studies. The model produces highly interpretable, spatially-circum-

scribed topics that enable flexible decoding of whole-brain images. Importantly, the Bayes-

ian nature of the model allows one to “seed” decoder priors with arbitrary images and text—

enabling researchers, for the first time, to generate quantitative, context-sensitive interpreta-

tions of whole-brain patterns of brain activity.

Author summary

A central goal of cognitive neuroscience is to decode human brain activity—i.e., to be able

to infer mental processes from observed patterns of whole-brain activity. However, exist-

ing approaches to brain decoding suffer from a number of important limitations—for

example, they often work only in one narrow domain of cognition, and cannot be easily

generalized to novel contexts. Here we address such limitations by introducing a simple

probabilistic framework based on a novel topic modeling approach. We use our approach

to extract a set of highly interpretable latent “topics” from a large meta-analytic database

of over 11,000 published fMRI studies. Each topic is associated with a single brain region

and a set of semantically coherent cognitive functions. We demonstrate how these topics
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can be used to automatically “decode” brain activity in an open-ended way, enabling

researchers to draw tentative conclusions about mental function on the basis of virtually

any pattern of whole-brain activity. We highlight several important features of our frame-

work, notably including the ability to take into account knowledge of the experimental

context and/or prior experimenter belief.

Introduction

A central goal of cognitive neuroscience is to understand how neural and cognitive function

interrelate. An important component of this effort is to be able to decode cognitive processes

from brain activity—that is, to infer mental processes from observed patterns of whole-brain

activation—or vice versa. Although researchers have dedicated increasing effort to the chal-

lenges of brain decoding [1–4], the vast majority of brain decoding studies to date have focused

on fine-grained analysis of a restricted set of cognitive states or experimental tasks—for exam-

ple, classifying which word or picture a subject is currently perceiving [5,6], or which of several

predefined tasks they are engaged in [7,8]. Such work is notable for its ability to achieve high

classification rates of very specific stimuli. However, this accuracy is typically purchased at the

cost of high context-specificity: thus far, there is little evidence that the patterns learned by

classifiers in such studies can capably generalize to new research sites, experimental designs,

and subject populations.

By contrast, much less work has focused on the development of open-ended decoding

approaches—One approach to this type of generalizable decoding is to use large-scale meta-

analytic databases such as Neurosynth [9] and BrainMap [10,11] to derive estimates of what a

broad variety of brain activations imply about cognitive processing—a form of analysis widely

known as reverse inference [12,13]. Such efforts necessarily trade fidelity for breadth; that is,

they allow researchers to draw inferences about almost any cognitive process that has been fre-

quently studied with fMRI, but these inference are coarse, and come with a high degree of

uncertainty. An illustrative study was conducted by Chang et al. [14], who used the Neuro-

synth database to "decode" the functional correlates of three distinct right insula clusters. The

analytical strategy involved correlating each insula map with dozens of Neurosynth meta-anal-

ysis maps and drawing conclusions about function based on differences in relative similarity

(e.g., an anterior insula region showed greatest similarity to executive control-related meta-

analysis maps; a ventral insula region showed greatest similarity to affect-related maps; etc.).

Other studies have used a similar approach to infer the putative functional correlates of whole-

brain maps in a variety of other settings [15–17].

More recently, we have generalized this approach and implemented it in the online Neuro-

synth [9] (http://neurosynth.org) and NeuroVault [65] (http://neurovault.org) platforms. At

present, researchers can upload arbitrary whole-brain maps to the NeuroVault repository and

instantly decode them against the entire Neurosynth database. This decoding functionality

provides researchers with a quantitative means of interpreting whole-brain activity patterns—

potentially replacing the qualitative conclusions more commonly drawn in the literature.

However, the present approach—which is based entirely on computation of spatial similarity

coefficients between the input map and comparison meta-analysis maps—has several weak-

nesses that limit its utility as a general-purpose decoding framework. Chief among these is that

the approach is not grounded in a formal model: it allows one to estimate the similarity of any

given brain activity map to other canonical maps, but does not provide a principled way to

interpret these mappings. Additionally, it does not attempt to identify any latent structure that
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presumably makes such mappings useful—for example, individual brain regions or functional

brain networks that correspond to specific cognitive processes.

By contrast, a generative framework for decoding brain activity—i.e., one that learns the

joint probabilities of all observed and latent variables in the model, and thus can be used to

generate new observations—would offer researchers a number of important benefits. First, it

would facilitate the learning of interpretable latent structures from a mass of superficial brain-

cognition mappings, rather than simply specifying the most likely class (e.g., cognitive task or

psychological state) conditional on the observed pattern of activations (as in a discriminative

model). Second, a generative model could function bidirectionally, simultaneously supporting

both encoding and decoding [18]. That is, in contrast to most decoding models, which predict

likely cognitive tasks or mental states on the basis of brain activity, a generative model addi-

tionally encodes descriptions of experimental tasks or psychological concepts in image space—

enabling researchers to construct hypothetical patterns of brain activity that are consistent

with the existing model but may have never been actually observed before (e.g., what pattern

of brain activity would a task combining painful stimulation and phonological awareness

produce?).

Perhaps most importantly, by virtue of explicitly modeling both the joint and marginal

probabilities of all events, a generative framework would provide the ability to contextualize

predictions through the explicit use of Bayesian priors. Discriminative brain decoding

approaches (which model only the conditional probability of different target states given

observed patterns of activity) are inherently acontextual in this sense, and provide no way to

integrate contextual information or prior belief into the decoding process. Since many if not

most brain regions are generally understood to contain multiple circuits with potentially dis-

tinguishable functions, knowledge of the experimental context within which a pattern of brain

activity unfolds should, in principle, constrain interpretation of observed brain activity. Left

inferior frontal gyrus activation may mean different things in the context of language compre-

hension [19], emotion regulation [20], or response inhibition [21]. More generally, true

reverse inference—i.e., the move to draw conclusions about the likelihood of different mental

states conditional on observed brain activity—is an inherently Bayesian notion that requires

one to formally model (and specify) the prior probability of each term or concept’s occurrence.

Whereas a similarity-based decoding approach cannot easily support such specification, it is

intrinsic to a generative model.

Here we take the first steps towards these goals by introducing an unsupervised generative

Bayesian decoding framework based on a novel topic model—Generalized Correspondence

Latent Dirichlet Allocation (GC-LDA)—that learns latent topics from the meta-analytic Neu-

rosynth database of over 11,000 published fMRI studies [9]. GC-LDA generates topics that are

simultaneously constrained by both anatomical and functional considerations: each topic

defines a spatial region in the brain that is associated with a highly interpretable, coherent set

of cognitive terms. In principle, this joint estimation approach should produce more parsimo-

nious brain-cognition mappings than the more common strategy of factorizing brain activa-

tion data by itself and then attempting to project the resulting components onto cognitive

dimensions [14,15,17,22].

We demonstrate that the dictionary of topics produced by the GC-LDA model successfully

captures known anatomical and functional distinctions and provides a novel data-driven met-

ric of hemispheric specialization. We then take advantage of the topic model’s joint spatial and

semantic constraints to develop a bidirectional, open-ended decoding framework. That is, we

demonstrate the ability to extract both a text-based representation of any whole-brain image,

and a whole-brain activity pattern corresponding to arbitrary text. Importantly, the Bayesian

nature of the model allows us to formally specify a decoder’s priors by "seeding" it with any
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arbitrary combination of images and text. The direct consequence is that, for the first time,

researchers are able to generative quantitative, context-sensitive interpretations of whole-brain

patterns of brain activity.

Results

Mapping the functional neuroanatomy of the brain with topic models

Our decoding framework is built on a widely-used Bayesian modeling approach known as

topic modeling [23,24]. Topic modeling is a dimensionality-reduction technique, which

decomposes a corpus of documents into a set of semantically coherent probability distribu-

tions over words, known as topics. Given this set of topics, each document can be represented

as a probabilistic mixture of topics. Topic models have been successfully applied to a wide

range of problems, including text classification [25,26], information retrieval [27], image clas-

sification [28], and theme discovery [29,30], and are now regarded as a standard technique for

text and image analysis. An important feature from a decoding standpoint is that topic models

are generative in nature: they allow a principled approach for bidirectional mapping from doc-

uments to latent components and vice versa; probabilistic generation of entirely new (i.e., pre-

viously unseen) documents; and formal Bayesian updating that can allow for explicit

specification of the prior topic probabilities. We return to these features later.

In previous work, we used a standard topic model to extract 200 semantically coherent top-

ics from the abstracts of all published fMRI articles contained in an older and smaller version

of the Neurosynth database [5,809 studies; 31]. We then projected each topic onto the space of

brain activity to identify brain regions associated with distinct cognitive profiles. A direct repli-

cation of this earlier approach using the current, and much larger, Neurosynth database

(11,406 studies) produces very similar results (e.g., Fig 1). As Fig 1 illustrates, the structure-

function mappings produced by this approach converge closely with numerous other findings

in the literature—e.g., the presence of a strongly left-lateralized language network [19] and the

involvement of dorsal frontoparietal regions in working memory and executive control [32].

However, because the standard topic model operates only on the text of publications, the top-

ics it produces are not constrained in any way by neural data. Furthermore, the spatial

Fig 1. Replication of topics from Poldrack et al. [31]. Figure shows the results of applying the generic LDA model [23] to

the Neurosynth database, as described in Poldrack et al. (2012). (A) Selected topics reported in Poldrack et al.[31] using an

older Neurosynth database of 5,809 studies. (B) Closest matching topics when applying the same approach to the current,

expanded, Neurosynth database (11,406 studies).

https://doi.org/10.1371/journal.pcbi.1005649.g001
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mappings for each topic are indirectly computed via the documents’ topic loadings—the spatial

data is not built into the model. The result is a set of widely distributed, network-like activation

maps that closely resemble the whole-brain maps produced by individual fMRI experiments.

While such an approach is informative if one’s goal is to identify the distributed neural correlates

of coherent psychological topics, it is of little help in the search for relatively simple, well-defined

functional-anatomical atoms. A similar limitation applies to more recent work by Yeo et al, who

used a more sophisticated topic model to derive a set of cognitive components that map in a

many-to-many fashion onto both behavioral tasks and patterns of brain activity [33]. While the

latter approach represents an important advance in its simultaneous use of both behavioral and

brain activity data, the resulting spatial components remain relatively widely distributed, and do

not provide insight into the likely cognitive roles of well-localized brain regions.

The GC-LDA model

To extract structure-to-function mappings focused on a more granular, region-like level of

analysis, we developed a novel topic model based on the Correspondence-LDA model [34]

that generates topics simultaneously constrained by both semantic and spatial information.

We term this the Generalized Correspondence LDA (GC-LDA) model [Fig 2; for details, see

35]. The GC-LDA model learns a set of latent topics, each associated with (i) a spatial probabil-

ity distribution over brain activations and (ii) a probability distribution over words that tend

to co-occur in article abstracts. In this context, we use the term document to refer to a single

Neurosynth article (containing both a list of cognitive terms that occur in the abstract, and a

set of reported brain activations).

This extension of the Correspondence-LDA model allows for any spatial distribution to be

associated with topics, where the choice of spatial distribution can be made according to the

Fig 2. Schematic overview of the GC-LDA model. Each document (an article in the Neurosynth corpus) is

represented as a mixture of learned latent topics, where each topic is associated with both a 3-dimensional

Gaussian spatial distribution, and a set of linguistic terms extracted from the abstract text.

https://doi.org/10.1371/journal.pcbi.1005649.g002
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goals of the experimenter. In [33], we considered three variants of the GC-LDA model, where

each topic was associated with either: (1) a single multivariate Gaussian distribution, (2) a mix-

ture of two unconstrained Gaussian distributions, or (3) a mixture of two Gaussian distribu-

tions that were constrained to be symmetric around the x-axis, such that these regions capture

bilateral symmetry. Based on our results in [33] we found that models using a mixture of Gaus-

sians outperformed models using a single Gaussian in terms of their ability to predict held-out

data. Furthermore, the symmetrically constrained mixture model enabled us to directly quan-

tify the degree of hemispheric symmetry (or lack thereof) displayed by each topic. For these

reasons, we focus in this paper on the model that uses a symmetrically constrained mixture of

two Gaussians. We note, however, that this choice of spatial distribution is not "correct" in any

normative sense, and simply reflects a pragmatic choice we make for purposes of both

interpretability and predictive validity (see [33] for additional discussion).

Fig 3 displays selected topics extracted using the GC-LDA model (for comprehensive

results, see S1 Fig and neurovault.org/collections/EBAYVDBZ/). As illustrated, the model pro-

duced numerous topics that had well-defined joint spatial and semantic representations (Fig

3A)—approximately half of the 200 extracted topics were clearly interpretable (see S1 Fig for

full details). Many of these topics successfully captured relatively basic associations between

specific structures and their putative functions; for example, we identified topics associated

with amygdala activation and emotion; reward and the ventral striatum; hippocampus and

memory; fusiform face area and face perception; and motion perception and the V5/MT com-

plex, among others (Fig 3B). In other cases, the model successfully captured and localized

higher-level cognitive processes—e.g., topics associated with the temporoparietal junction and

mentalizing, temporal pole and person perception, or ventromedial PFC and valuation,

among others (Fig 3B). In supplementary analyses, we further demonstrate that the full set of

200 topics can be used to accurately “reconstruct” arbitrary patterns of whole-brain activity,

providing an interpretable, low-dimensional way to summarize virtually any whole-brain

image (Supporting Results).

Probabilistic structure-to-function mapping

An important feature of the GC-LDA model is that it avoids the common, but restrictive, clus-

tering assumption that each voxel should only be assigned to a single group [36–40]. By allow-

ing extracted topics to overlap with one another in space, the model explicitly acknowledges

that the brain contains spatially overlapping circuits with thematically related functions. Fig 4

illustrates the close spatial and semantic relationships between 10 different topics localized to

overlapping parts of the parietal cortex along the banks of the intraparietal sulcus (IPS). Note

the particularly similar posterior parietal cortex (PPC) distributions of topics associated with

visuospatial processing, working memory, and general task engagement. These results are con-

sistent with electrophysiological findings of highly heterogeneous, and typically complex,

response profiles in PPC neurons [41–43, including coding of visual object location, direction

of attention, motor plans, etc.; 44], and underscore the difficulty individual fMRI studies may

face in trying to isolate brain-cognition mappings via a hemodynamic signal that sums over

millions of neurons at each voxel.

Analogously, the probabilistic nature of the GC-LDA mappings can also provide insights

into the compositional character of most cognitive states—i.e., the fact that most states are

likely to recruit activation of a number of spatially distinct brain regions. Fig 5 displays activa-

tion and word distributions for a number of emotion-related topics. Different topics captured

different aspects of emotional processing: consistent with extensive previous work, extrastriate

visual cortex and amygdala were associated with perceptual processing of emotion [45–47];
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rostral anterior cingulate cortex and anterior insula were associated with experiential aspects

of emotion [48]; and lateral frontal cortex was associated with emotion regulation [20,49].

A data-driven window into lateralization of function

As noted above, each topic in the GC-LDA model was deliberately constrained to reflect two

sub-regions reflected around the brain’s x-axis. This constraint allowed us to estimate the rela-

tive weight of activations for each topic in the left vs. right hemisphere—in effect providing a

novel, data-driven index of hemispheric specialization. As one might expect given the marked

degree of activation symmetry observed in most fMRI studies, most topics showed little or no

hemispheric bias (Fig 6, top). However, there were a number of notable exceptions (e.g., Fig 6,

bottom). Several language-related topics localized strongly to left-hemisphere language

regions—including inferior and middle frontal gyrus, posterior superior temporal sulcus, and

Fig 3. Selected topics learned by the GC-LDA model (for full results, see S1 Fig). (a) Spatial distributions for 90 of

the 200 topics. Each color represents a different topic. Top row: hard assignments of activations to topics; each point

represents a single activation from a single study in the Neurosynth database (note that each topic is spatially represented

by a mixture of only two symmetrically-constrained gaussians; the appearance of multiple regions that share colors is due

to the inevitable reuse of perceptually similar colors). Bottom row: estimated multivariate Gaussian mixture distribution of

each topic. (b) Top semantic associates (word clouds) and activation distributions (orthogonal brain slices) for selected

topics. The size of a term in each word cloud is proportional to the strength of loading on the corresponding topic.

https://doi.org/10.1371/journal.pcbi.1005649.g003
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inferotemporal cortex [encompassing the putative visual word form area; 50]. Right-lateralized

topics were fewer in number and generally showed a weaker hemispheric asymmetry, but

notably included a face processing topic localized to the putative fusiform face area [51], and

an inhibitory control-related topic localized to the right ventral anterior insula [52]. To our

knowledge, these findings constitute the first data-driven estimation of region-level functional

hemispheric asymmetry across the whole brain.

Automatic text-to-image and image-to-text decoding

Importantly the GC-LDA model is able to produce probabilistic estimates of word and activa-

tion distributions for entirely new data points. Moreover, because each topic is associated with

both a word distribution and a spatial distribution, we can proceed bidirectionally—either

translating arbitrary text into image space, or decoding activations or images for their associ-

ated semantic content. Fig 7 illustrates three different applications of this approach. First, we

Fig 4. Activation profiles and top-loading words for spatially overlapping topics in parietal cortex. Top row: hard

assignments of activations to topics; each point represents a single activation from a single study in the Neurosynth

database. Bottom row: estimated multivariate Gaussian mixture distribution of each topic.

https://doi.org/10.1371/journal.pcbi.1005649.g004

Fig 5. Activation profiles and top-loading words for emotion-related topics. Top row: hard assignments

of activations to topics; each point represents a single activation from a single study in the Neurosynth

database. Bottom row: estimated multivariate Gaussian mixture distribution of each topic.

https://doi.org/10.1371/journal.pcbi.1005649.g005
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can generate estimated activation probabilities for any word or set of words. Fig 7A illustrates

three concrete examples. In (1), we observe a complex, distributed pattern of activity for the

term ’motor’, including activations in primary and supplementary motor cortices, cerebellum,

and the basal ganglia. This result demonstrates that even though each topic in our dictionary is

spatially constrained, individual words will often still have widely distributed neural correlates

by virtue of loading on multiple topics.

In (2) we pass in a list of generic cognitive effort-related terms (’effort’, ’difficult’, and

’demands’), and observe highly circumscribed activations in frontoparietal regions frequently

Fig 6. Data-driven estimation of hemispheric lateralization of cognitive function. Top: histogram and

kernel density estimation plot of the lateralization coefficient for all topics. Values below 0.5 represent left-

lateralization; values above 0.5 represent right-lateralization. Bottom: selected topics that displayed notable

hemispheric lateralization.

https://doi.org/10.1371/journal.pcbi.1005649.g006
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implicated in general goal-directed processing [32,53]. This result demonstrates the GC-LDA

model’s ability to produce topics with relatively abstract semantics: while few studies explicitly

set out to study the neural correlates of task difficulty or cognitive effort, our model success-

fully learns that regions like anterior insula and preSMA—which tend to activate in a very

wide range of studies—likely support fairly general cognitive operations non-selectively

invoked by many different tasks [Neurosynth; 9,cf. 14,54].

Lastly, in (3), we provide a full sentence as input ("painful stimulation during a language

task"), producing a map with peaks in both pain-related (e.g., posterior insula) and language-

related left perisylvian regions. While the model follows the bag-of-words assumption (i.e., the

order of words has no effect on the generated image), its compositional character is evident, in

that it is possible to generate a predicted image for virtually any cognitive state or states that

can be described in text.

Second, we can generate a list of plausible semantic associates for any set of discrete brain

coordinates. Fig 7B illustrates how this approach can be used to probe the function of a partic-

ular region both in isolation and in context. The top row lists the top probabilistic word associ-

ates for a temporoparietal region centered on MNI x-y-z coordinates (-56, -52, 18). The

function of this region appears ambiguous—likely reflecting the presence of multiple overlap-

ping neural circuits—with the top associates including ’reading’, ’mentalizing’, and ’pictures’.

However, adding other coordinates strongly constrains functional interpretation. The addition

of medial parietal (0, -58, 38) and dorsomedial prefrontal (4, 54, 26) activations (middle row)

produces strong overall loadings on default network-related terms such as ’self’, ’social’, and

’moral’. By contrast, adding left superior temporal sulcus (-54, -40, 0) and left inferior frontal

gyrus (-50, 26, 6) activations (bottom row) instead produces strong loadings on language and

reading-related terms (Fig 7B). Thus, the GC-LDA model allows researchers to freely explore

structure-function mappings in the brain in a context-specific way that recognizes that the

Fig 7. Examples of generative text-to-image and image-to-text mapping using the trained GC-LDA

model. (A) Generation of predicted whole-brain images from arbitrary text. (B) Topic-based decoding of

discrete activation coordinates. (C) Topic-based decoding of continuous whole-brain images; examples

selected from the cognitive components reported in Yeo et al. [33], the BrainMap ICA components reported in

Smith et al. [15], and the language and emotion contrasts from the n = 500 release of the HCP dataset. Note

that the scale of the values in (B) and (C) is dependent on the input image, and should not be assigned an

absolute interpretation.

https://doi.org/10.1371/journal.pcbi.1005649.g007
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cognitive operations supported by individual regions can contribute to multiple distinct cogni-

tive functions.

Lastly, and perhaps most powerfully, the activation-to-word mapping approach can be gen-

eralized to entire whole-brain images. Given any real-valued input image, we can use the

GC-LDA topics to generate a rank-ordered list of associated terms. While the output values

cannot be interpreted as actual probabilities (due to the arbitrary scale of the inputs), the

results are highly informative, providing a quantitative, literature-based decoding of virtually

any pattern of whole-brain activity. Fig 7C illustrates the results for selected images, including

two of the cognitive components from Yeo et al. [33], two of the BrainMap ICA components

from Smith et al. [15], and two group-level HCP task contrasts (for additional results, see S2

Fig and S3 Fig). The decoded term list converges closely with extensive prior work; for exam-

ple, a BrainMap ICA component focused largely on extrastriate visual cortex and adjacent

inferotemporal areas is associated with motion, face perception, and other vision-related

terms; a cognitive component from Yeo et al. [33] largely co-extensive with the frontoparietal

control network loads most strongly on terms like “working memory”, “demands”, and

“numerical”, and so on.

To more formally assess the performance of the decoder in an unbiased way, we used a set

of NeuroVault images that were previously manually annotated using labels derived from the

Cognitive Atlas ontology [55]. For each image, we used the image-to-text decoder to generate

an image-specific rank-ordering of the 1,000 most common terms in the entire Neurosynth

corpus. We then identified the rank, within that list, of each human-annotated Cognitive Atlas

label. The median rank across all 300 images was 220—an impressive value considering the

open-ended nature of the task and the unfiltered nature of the NeuroVault database (i.e., there

is no guarantee that the images uploaded to Neurovault actually reflect the processes they are

intended to reflect—a point we discuss further in the next section). By comparison, when we

generated a null distribution of 1,000 permutations and computed the same median statistic,

the mean and minimum values across all permutations were 442 and 384, respectively. In

other words, the decoder produced rankings that were vastly more similar to expert human

judgments than one would expect by chance.

Brain decoding in context

Importantly, the above analysis provides a necessarily conservative estimate of the perfor-

mance of our decoder, because in many cases, the discrepancy between human-annotated and

automatically-decoded labels is bound to reflect error in the former rather than the latter. We

note that human-generated annotations typically reflect researchers’ beliefs about which cog-

nitive processes a particular experimental manipulation is supposed to influence, and do not

represent ground truth. For example, the HCP Gambling Task [adapted from 56] was puta-

tively designed "to assess reward processing and decision making" [57]. Yet the contrast

between the reward and loss conditions (depicted in Fig 8) reveals robust reward-related

increases in visual and frontoparietal cortices (Fig 8, top). Not surprisingly, terms like ’visual’,

and ’working memory’ are at the top of the list returned by our decoder (see “uniform prior”

results in Fig 8). Does this mean that the decoder is performing poorly, and failing to recover a

known ground truth? No. Given the non-canonical pattern of observed brain activity, we

believe a more plausible alternative is that the manipulation in question simply had a more

complex effect on cognition than the "Reward vs. Loss" label might lead one to expect. In other

words, the "assumption of pure insertion"—i.e., that the gain vs. loss contrast measures only

cognitive processes related to reward or loss processing—is probably unwarranted in this case,

as in many others [58,59].
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The potential for discrepancy between expert human judgment and automated decoding

creates an interesting conundrum: which answer should a neuroimaging researcher trust?

Our view is that there is no blanket answer to this question; much depends on the particular

context. Importantly, our decoding framework provides a way to quantitatively synthesize

researchers’ prior beliefs with the associations learned by the GC-LDA topic model by explic-

itly manipulating the prior probabilities of the 200 topics. Because our model allows for bi-

directional decoding (text-to-image or image-to-text), topic priors can be set by “seeding” the

model with either a whole-brain image (or images), or a set of terms. The seeds are decoded in

the normal way to update the initial uniform prior, and subsequent decoding is then based on

the updated (non-uniform) priors. The approach is illustrated in Fig 8, which displays the

results of a topic decoding analysis for two HCP task contrasts when the decoder is seeded (i)

with uniform priors, (ii) with a set of reward-related terms, or (iii) with the whole-brain Neu-

rosynth meta-analysis map for the term “reward” (http://neurosynth.org/analyses/terms/

reward). The strength of the prior is also explicitly varied.

The major result illustrated in Fig 8 is that if one is able to specify a prior belief about

the experimental context, the decoder respects this prior and produces results that are, to

varying degrees, biased in the direction of the prior. The decoder results are implicitly

smoothed by the underlying latent topics; for instance, in the top row of Fig 8, the terms

“monetary” and “anticipation” appear near the top of the text-seeded results, even though

they were not included in the list of seed terms. Moreover, the priors do not overwhelm the

data (unless the strength parameter is set very high, as in the columns with weight = 0.25).

When the reward-related priors are applied to a map that is highly inconsistent with the

prior—as in the Language >Math contrast in the bottom row of Fig 8—the change in

decoder results is much more subtle. Thus, our decoding framework provides a quantita-

tive way of contextualizing interpretations of fMRI data in a principled way—or, alterna-

tively, assessing the degree to which a particular interpretation is dependent on typically

unstated prior beliefs.

Fig 8. Effects of different topic priors on decoding results. The top 10 terms produced by the decoder are displayed for

two different HCP contrasts (Gain > Loss from the Gambling task and Language >Math from the Language task) and three

different sets of topic priors (left: uniform prior; middle: priors seeded with a list of reward-related terms; right: priors seeded

with the Neurosynth “reward” meta-analysis map). For the non-uniform priors, results are displayed for priors of differing

strengths (weak = 0.1, strong = 0.25). Line plots above the decoder outputs illustrate the prior distribution of topics used in

each analysis (for the sake of visual clarity, topics are ordered by increasing weight separately in each case).

https://doi.org/10.1371/journal.pcbi.1005649.g008

Decoding brain activity using a probabilistic functional-anatomical atlas of human cognition

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005649 October 23, 2017 12 / 24

http://neurosynth.org/analyses/terms/reward
http://neurosynth.org/analyses/terms/reward
https://doi.org/10.1371/journal.pcbi.1005649.g008
https://doi.org/10.1371/journal.pcbi.1005649


Discussion

The present work significantly advances beyond previous efforts with respect to both (a) the

modeling of the latent structure of neurocognition and (b) the open-ended decoding of

human brain activity. With respect to the former, the GC-LDA topic model we developed

introduces several innovative features to the literature. First, the simultaneous use of spatial

and semantic information allows the model to learn topics that have both well-localized spatial

representations, and clear semantic correlates. Approximately half of the 200 topics we

extracted in a completely data-driven way closely tracked previous functional and anatomical

distinctions reported in previous fMRI studies. Second, the probabilistic nature of the resulting

topics stands in contrast to many previous clustering and parcellation approaches, and more

accurately reflects the many-to-many nature of the relationship between cognitive constructs

and neurobiological structures. Third, the GC-LDA model’s spatial symmetry constraint

enabled us to generate brain-wide, data-driven estimates of the relative hemispheric lateraliza-

tion of distinct cognitive topics. Consistent with the broader literature, most topics displayed a

high degree of symmetry, with notable exceptions including the strong left-lateralization of

language- and memory-related topics, and the more modest right-lateralization of response

inhibition and face-related topics. Finally, the spatially compact, semantically well-defined

nature of the 200 extracted topics makes the full topic set an ideal basis set for use in

dimensionality reduction and image interpretation applications (as exemplified by the “topic

reconstruction” analyses reported in the Supporting Results and illustrated in S4–S7 Figs).

From the standpoint of efforts to decode whole-brain activation patterns, our results also

advances beyond previous work. First, by simultaneously constraining topics both spatially

and semantically, the GC-LDA model generates topics designed to maximize the correspon-

dence between cognition and brain activity. Conceptually, this idea is similar to other efforts

that have sought to constrain factorizations of neuroimaging data using multiple sources of

information (e.g., as in Yeo et al’s author-topic model; [33]). By contrast, most previous open-

ended decoding unsupervised learning approaches have typically focused primarily or exclu-

sively on a single level of analysis. That is, they have either focused on the factorization prob-

lem predominantly at the neurobiological level [36,39,60], and then (in some cases; e.g.,

[14,15,17]) projected the resulting components into the psychological/task space; or, they have

done the converse, projecting predefined cognitive labels [e.g., 16] or semantically-derived

components [e.g., 31] onto patterns of brain activity. Such approaches make sense in cases

where researchers are deliberately privileging one level of analysis, but they are likely to pro-

duce suboptimal results when the goal is to derive the most parsimonious mappings between
the cognitive and neurobiological levels of analysis.

Second, the generative nature of our decoding framework facilitates both encoding and

decoding, enabling researchers not only to identify likely functional correlates of whole-brain

activity patterns or sets of discrete activations, but also to project flexible text descriptions of

tasks or processes into image space. This benefit is not unique to GC-LDA, of course; research-

ers have previously applied a variety of generative models to human brain imaging data [e.g.,

61,62,63].

Third, our Bayesian approach allows researchers to formally specify priors on the GC-LDA

topics, providing a powerful means of contextualizing interpretations and accounting for prior

expectations and beliefs. We illustrate how a researcher can flexibly "seed" a decoding analysis

using cognitive terms and/or whole-brain maps, thus ensuring that the decoder respects prior

information about the experimental context. Current decoding approaches are typically forced

to rely on unstated and inflexible assumptions about the base rates associated with different

cognitive processes or tasks—a limitation that makes it difficult to know how much trust to
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place in a particular interpretation of one’s results. While our approach currently has impor-

tant limitations (see below), it represents an important step towards the goal of being able to

decode arbitrary patterns of whole-brain activity in a way that formally synthesizes prior

knowledge with observed results.

Naturally, the present work remains constrained by a number of important limitations.

First, the specificity of the extracted topics is limited (both spatially and semantically) by the

quality of the meta-analytic data in the Neurosynth database [for discussion, see 9]. In theory,

greater specificity might be achievable using human-curated meta-analytic databases (e.g.,

BrainMap; [11]) or publicly deposited whole-brain images [64,65]. However, such resources

are currently much smaller than Neurosynth—implying a significant decrement to the sensi-

tivity of our data-intensive modeling approach—and, in the case of BrainMap, have usage

restrictions that limit reproducibility and transparency. It is also important to recognize that—

as illustrated by our results suggesting a discrepancy between expert human judgment and the

accumulated literature—there is no guarantee that manually annotated data will be free of

bias. Indeed, there should be little doubt that even an optimal coding of the primary literature

would fail to remove a large source of bias, as the topics investigators study and the results they

report are to a large degree inevitably influenced by their own beliefs as well as the historical

trajectory of the discipline as a whole (e.g., the amygdala’s role in emotion may be overrepre-

sented in the literature by virtue of researcher expectations, selection bias, etc.). Nevertheless,

it is clear that the present topics already converge closely with prior literature. Moreover, the

integration of our topics with the public NeuroVault repository ensures that researchers will

always be able to apply the most current topic sets to their data at the push of a button.

Second, the output of the GC-LDA model is necessarily data-, context-, and assumption-

dependent. While the topics produced by the model generally have parsimonious interpreta-

tions that accord well with previous findings, they should be treated as a useful, human-com-

prehensible approximation of the true nomological network of neurocognition, and not as a

direct window into reality. For the sake of analytical tractability, our model assumes a one-to-

one mapping between semantic representations and brain regions, whereas the underlying

reality almost certainly involves enormously complex many-to-many mappings. Similarly, re-

running the GC-LDA model on different input data, with different spatial priors, a different

number of topics, or with different analysis parameters would necessarily produce somewhat

different results. Of course, this concern applies equally to other large-scale data-driven

approaches. We highlight it here simply because we would not want researchers to reify the

topics we introduce here as if they are uniquely “real”. In our view, the overriding evaluation

metric for any novel parcellation or clustering technique is whether it is scientifically produc-

tive over the long term [cf. 66]. With that caveat in mind, we believe that the framework intro-

duced here strikes an excellent balance between interpretability, flexibility, and ease of use, and

provides an important complement to previous data-driven approaches.

Third, our GC-LDA model, like most topic models, is completely unsupervised; it seeks to

identify statistically parsimonious groupings and mappings of terms and activation patterns

into cohesive topics, and makes no attempt to maximize classification or prediction accuracy

on any supervised task. A natural consequence of this decision is that while topics extracted

with GC-LDA are likely to be useful in a wide range of predictive applications (see Fig 7; Sup-

porting Results; [35]), the model is very likely be outperformed in any given application by

many other models that are specifically trained to optimize the criterion in question. We view

this as a feature and not a bug, as our goal is to extract a set of parsimonious topics that simul-

taneously respect semantic and spatial constraints, and not to maximize predictive accuracy

on any one task. However, it is important to recognize the inherent tradeoff implied by this

choice, and in cases where predictive accuracy is paramount, we encourage researchers to use
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more traditional supervised approaches. A number of recent efforts have also sought to

develop partly supervised approaches that couple an unsupervised dimensionality reduction

step with a supervised learning step [e.g., 67,68,69] in the hopes of providing the best of both

worlds (though the success of such an approach then depends on the quality and representa-

tiveness of the supervised tasks).

Lastly, while our decoding framework is based on probabilistic GC-LDA topics, the outputs

it generates cannot typically be interpreted as probabilities, because the input images research-

ers conventionally seek to decode are mostly real-valued t or z maps whose meaning can vary

dramatically. While this restriction limits the utility of our framework, it is, at present,

unavoidable. Providing meaningful absolute estimates of the likelihood of different cognitive

processes given observed brain activity would require either (a) that researchers converge on a

common standard for representing observed results within a probabilistic framework (e.g.,

reporting the probability of subjects displaying supra-threshold activation in every voxel), or

(b) re-training the GC-LDA model and associated decoding framework on a very large corpus

of whole-brain images comparable to those that researchers seek to decode, rather than on a

coordinate-based meta-analytic database. Of these two alternatives, we view the latter as the

more feasible and productive strategy. We thus believe that the best hope for truly open-

ended, fully probabilistic brain decoding lies in the widespread communal adoption of whole-

brain images repositories like NeuroVault.org. We are optimistic that in the relatively near

future, we will be able to use the topic modeling and decoding methods introduced here to

produce highly informative, context-sensitive predictions about the mental processes implied

by arbitrary patterns of whole-brain activity.

Materials and methods

Datasets

All data used to train the GC-LDA topic model came from the Neurosynth database [9;

neurosynth.org]. The database contains activation coordinates that were automatically

extracted from 11,409 published fMRI studies (release v0.6, July 2015; data are available from

github.com/neurosynth/neurosynth-data), as well as associated semantic terms extracted from

the corresponding article abstracts. Further details have been reported in previous studies

[9,14,31,70].

For decoding analyses, we used whole-brain maps obtained from several sources, including:

(1) The 500-subject release of the Human Connectome Project [71]. We focused on single-sub-

ject whole-brain beta maps from several functional tasks. In all cases, we used experimental

contrasts predefined by the HCP research team and included in the “preprocessed” data

release (i.e., we did not preprocess or alter the provided contrast images in any way, nor did

we filter participants for relatedness or any other criterion). Studied contrasts included the

comparison between faces and shapes in the Emotion task; between language and math condi-

tions in the Language-Math condition; between social and non-social motion in the Social

Cognition task. (2) NeuroVault.org maps. We downloaded two sets of maps from the Neuro-

Vault whole-brain image repository: (i) a completely random set of 100 images (subject to the

constraint that each image had to come from a different image collection, to maximize inde-

pendence of images), and (ii) a random set of 300 NeuroVault images that had been previously

manually annotated using the Cognitive Atlas ontology for a completely different purpose

(Sochat et al., in preparation). (3) BrainMap ICA and Yeo et al. author-topic “cognitive compo-
nent” maps. We obtained these two sets of maps—reported in Smith et al. [15] and Yeo et al.

[33], respectively—via the web.
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All analyses were conducted in the standard MNI152 2mm space. Images that were not

nominally in this space (e.g., many of the NeuroVault maps) were transformed to the target

using an affine transformation with continuous interpolation (using the resample_img func-

tion in the nilearn package; nilearn.github.io). Such transformations are imperfect and subject

to considerable error, but we nevertheless opted for the simplicity of such an approach seeing

as our goal was to illustrate the application of the GC-LDA model rather than to draw concrete

inferences about any of the tested images. Once in the MNI152 space, we used the standard

gray matter mask from the FSL package [72] to select voxels for analysis.

Topic modeling

A high-level schematic of the model we employ is presented in Fig 2; the model is presented

using graphical model plate notation representation in Fig 9. We begin with the Neurosynth

dataset, which contains data extracted from 11,406 published fMRI articles. Each of the 11,406

document consists of (1) a set of unigrams and bigrams of words extracted from the publica-

tion’s abstract, describing what each experiment was about, and (2) the set of peak-activation

coordinates that were reported in HTML tables within the paper (for data extraction details,

see Yarkoni et al, 2011). The model learns a set of T topics, where each topic is associated with

some spatial distribution (e.g., a 3-dimensional Gaussian distribution with parameters μt and

σt), and a multinomial distribution ϕt over all of the unique types of linguistic features (consist-

ing of unigrams and bigrams) in the corpus. This model is a generative model, meaning that it

learns the joint probability distribution of all variables, and thus describes a process that can

produce new approximations of the observed data (the linguistic features and activation coor-

dinates) via a set of latent (unobserved) topics.

Fig 9. Graphical model of the full GC-LDA model.

https://doi.org/10.1371/journal.pcbi.1005649.g009
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The model assumes that each document d is generated by first sampling a multinomial

probability distribution θd over topics from a Dirichlet prior distribution. Then, to generate

each activation peak x in the document, the document first samples a topic y from its distribu-

tion over topics θd and then samples a peak activation at location x from the spatial distribu-

tion associated with topic y. To generate each word in the document, a topic z is sampled

proportional to the number of times that the document sampled activations peaks from each

topic, and then a word token w is sampled from topic z’s probability distribution over word

types ϕz. To illustrate this process, consider the example Document 1 shown in Fig 2, which

we can imagine describes an experiment measuring reaction times on a word-identification

task. The model assumes that neural activation peaks reported in this experiment will be

sequentially sampled from the spatial distributions associated with topics 1 and 2 (which relate

to language processes and motor processes, respectively). The model then assumes that the

words in the document—used to describe the experiment and its results—will be sampled

from the linguistic distributions associated with topics 1 and 2, proportional to the number of

times activation peaks were sampled from each of these topics.

Because the model enforces a correspondence between the frequency with which docu-

ments sample their words and activations from each topic, the model ensures that over the

document corpus, the linguistic features associated with each topic will be closely related to the

topic’s spatial distribution over activations. More specifically, the model will identify a topic-

specific distribution over neural activations that tends to co-occur with the topic’s linguistic

features across the corpus.

The general framework of the GC-LDA model allows the experimenter to choose any valid

probability distribution for the spatial component of each topic. The results displayed in Figs

3–8 correspond to a GC-LDA model in which each topic’s spatial distribution is captured by a

mixture of two Gaussian distributions that have been constrained to be symmetric about the

x-axis. In our experiments, we evaluated several variations of the GC-LDA model using differ-

ent probability distributions. We started with each topic having a single multidimensional

Gaussian spatial distribution. We then replaced the single Gaussian distribution with a Gauss-

ian Mixture distribution containing two components (i.e. subregions). In a further variant of

this model (pictured in Fig 1), we constrained the spatial arrangement of the two component

distributions of the Gaussian mixture distribution, such that their means were symmetrical

with respect to the x-axis of the brain (i.e., so that for each topic, the spatial distribution would

consist of one component region in the left hemisphere and a second component region in the

right hemisphere). This allowed us to include an anatomical constraint based on known fea-

tures of functional neuroanatomy—specifically the fact that there is generally a bilateral sym-

metry with respect to neural functionality. It further provided us with an automated way of

measuring the lateral asymmetry of different cognitive functions (given by each topic’s proba-

bility of drawing an activation from its different components).

Given a formalized generative process for any of these models, we can use Bayesian infer-

ence methods to learn all of the latent (unobserved) parameters of this model from the

observed data (see [35], for details). Specifically, the model learns a set of T topics, where each

topic has an associated spatial probability distribution over the coordinates in the brain, as

well as a multinomial distribution over linguistic features. The model additionally learns the

topic mixture weights for each document.

Although Bayesian statistics can have poor scaling behavior with respect to the number of

observed variables p [73], inference for GC-LDA is well behaved with respect to p. For the

GC-LDA inference methods described in [33], the computational complexity per iteration is O
(T(NW + NXR)), where T is the number of topics, R is the number of subregions, and NW and

NX are the number of word tokens and peak activation tokens, respectively.
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Text-to-image and image-to-text decoding

For text-to-image decoding (Fig 7A), we first compute a Topic (T) × Word-type (W) matrix of

conditional probabilities PT×W, where cell Pij is the probability p(t = i|w = j) that the model

assigns word type w from the text input to the ith topic. This matrix is computed, using Bayes’

rule, from the topic’s probability distributions over word types FW×T in the trained GC-LDA

model, as follows:

Ptw ¼ p t ¼ ijw ¼ jð Þ ¼
pðw ¼ jjt ¼ iÞ � pðt ¼ iÞ

pðwÞ
¼

Fji
PT

i¼1
Fji

assuming a uniform prior probability of each topic, p(t). We then obtain a vector of topic

weights τ for the entire input by summing over the all word tokens w in the input; i.e.,

tt ¼
X

w

Ptw

Lastly, we multiply this vector of topic weights by a Topic (T) × Voxel (V) matrix AT×V, where

cell Aij reflects the smoothed conditional probability p(v = j|t = i) that the model samples an

activation at brain voxel j (of V total voxels) from topic i. The rows of this matrix are

(smoothed versions of) the images displayed in Fig 3. The resulting (vectorized) whole-brain

image is thus given by the product: τ � A.

Note that the resulting values cannot be interpreted as probabilities, because we deliberately

sum over words in the input rather than computing the joint probability. The reason for this is

that, while the latter approach is technically feasible, it typically produces very similar results

for short inputs, and produces unstable results when the input sentence exceeds a few words in

length (because the sparse nature of the word-to-topic mapping results in the compounding of

many very small probabilities).

For discrete coordinate-to-text decoding (Fig 7B), we repeat the above process, but proceed

in the opposite direction. That is, we first compute a Topic × Voxel matrix PT×V, where cell Pij

reflects the conditional probability p(t = i|v = j) that the model assigns the activation at voxel j
in the input to the ith topic. This matrix is computed from the trained GC-LDA model by first

computing the empirically observed probability of sampling of each voxel from each topic

(given each topic’s spatial distribution), and then renormalizing these probabilities using

Bayes’ rule, under the same uniform prior assumption used above for text-to-image decoding

(i.e., we compute the conditional probability p(t = i|v = j) as if the prior, p(t), was uniform over

all topics). We then sum over all of the input activations to obtain a vector of topic weights τ
for the given input. Lastly, we project the topic weights into the word space by multiplying the

vector of topic weights τ by the Topic × Word matrix FW×T, where cell Fij reflects the condi-

tional probability p(w = i|t = j) that the model samples the ith word type from topic j: τ � F.

To decode text from continuous whole-brain images (Fig 7C), a slightly different approach

is required. Although whole-brain decoding superficially resembles the decoding of discrete

coordinates, the fact that the input images are real-valued and have arbitrary scaling precludes

a true probabilistic treatment. Instead, we adopt a modified approach that weights the condi-

tional probability matrix PT×V by the similarity of the input image to each of the GC-LDA

topic maps. We compute a vector of topic weights τ as:

tt ¼ PT�V � IV

where PT×V is the Topic × Voxel matrix of conditional probabilities of assigning an activation

at voxel v to topic t, and IV is the vectorized whole-brain input image. We then project the

topic weights into word space in the same way as for the discrete coordinates: τ � F. The scale

Decoding brain activity using a probabilistic functional-anatomical atlas of human cognition

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005649 October 23, 2017 18 / 24

https://doi.org/10.1371/journal.pcbi.1005649


of the resulting values is arbitrary, and depends on the input image, but the rank-ordering of

terms is instructive and typically converges closely with human-annotated labels.

Contextual decoding via topic “seeding”

Specifying priors on the GC-LDA topics can in principle be accomplished directly, by simply

setting the desired prior probabilities on topics p(t) when computing the matrices PT×V and

PT×W. The decoder results will then directly reflect the adjustment in both the text-to-image

and image-to-text directions. However, researchers are unlikely to have strong intuitions

about the relative base rates of the latent topics themselves. More commonly, they will instead

wish to update the priors indirectly, based on a more intuitive expression of the experimental

context or prior belief. This can be accomplished by “seeding” the priors with image and/or

text inputs. In this case, the procedure can be thought of as a two-step application of the decod-

ing methods described above. On the first pass, the input image or text is used to estimate val-

ues of τ (no further output is generated). On the second pass, the τ computed during the first

pass is used as an informative prior p(t) in computing matrix PT×V or PT×W as described previ-

ously, and this updated matrix is applied to the actual image or text to be decoded. This proce-

dure can repeat an indefinite number of times, as in a typical Bayesian context (i.e., the

posterior τ probabilities become the priors for the next decoding application).

Software

All of the methods and analyses were implemented in the Python programming language. We

used the standard scientific Python stack for analysis: Numpy [74] as the basis for all numerical

computing routines, Scipy [75] for various scientific utilities, and pandas for structured data

manipulation [76]. For neuroimaging data analysis, we used the nibabel library for I/O opera-

tions and basic image manipulation (http://nipy.org/nibabel) and the nilearn library (http://

nilearn.github.io) to plot brain slices. Word clouds were generated using the word_cloud pack-

age (https://github.com/amueller/word_cloud). An open-source implementation of our

GC-LDA model, including documentation and examples, is publicly available on GitHub

(https://github.com/timothyrubin/python_gclda). The topic maps reported here are available

as a collection of interactive, downloadable whole-brain maps from the NeuroVault website

(http://neurovault.org).

Supporting information

S1 Supporting Results. Whole-brain image reconstruction using learned GC-LDA topics.

(PDF)

S1 Fig. Full results for all topics learned by the GC-LDA model. Each row represents a single

topic. For each topic, the word cloud displays the top semantic associates (the size of each term

is roughly proportional to the strength of its loading, and the orthviews display all hard assign-

ments of activations to that topic (each point represents a single activation from a single study

in Neurosynth).

(JPG)

S2 Fig. Topic-based decoding of 20 BrainMap-derived ICA components reported in Smith

et al. [15].

(JPG)

S3 Fig. Topic-based decoding of 12 “cognitive components” reported in Yeo et al. [33].

(JPG)
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S4 Fig. Topic-based reconstruction of whole-brain activity maps. Representative examples

from (A) the set of 20 BrainMap ICA components reported in Smith et al. [15]. (B) the Neuro-

Vault whole-brain image repository [2], and (C) single-subject contrast maps from the emo-

tion processing task in the Human Connectome Project dataset (face vs. shape contrast). Each

row displays the original (left) and reconstructed (center) image, along with the coefficient of

determination (R2) for the fitted reconstruction model, and a scatter plot of all voxels (right).

(JPG)

S5 Fig. Reconstruction of 20 BrainMap ICA components reported in Smith et al. [15].

(JPG)

S6 Fig. Topic reconstruction of 12 “cognitive components” reported in Yeo et al. [33].

(JPG)

S7 Fig. Topic reconstruction of 100 random maps extracted from the NeuroVault whole-

brain image repository. Labels in white indicate human-annotated cognitive atlas paradigm,

when available.

(JPG)
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