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ABSTRACT
Abstraction is a core principle of Distributional Semantic Models (DSMs) that learn semantic
representations for words by applying dimensional reduction to statistical redundancies in
language. Although the posited learning mechanisms vary widely, virtually all DSMs are
prototype models in that they create a single abstract representation of a word’s meaning. This
stands in stark contrast to accounts of categorisation that have very much converged on the
superiority of exemplar models. However, there is a small but growing group of accounts in
psychology, linguistics, and information retrieval that are exemplar-based semantic models.
These models borrow many of the ideas that have led to the prominence of exemplar models in
fields such as categorisation. Exemplar-based DSMs posit only an episodic store, not a semantic
one. Rather than applying abstraction mechanisms at learning, these DSMs posit that semantic
abstraction is an emergent artifact of retrieval from episodic memory.

ARTICLE HISTORY
Received 2 December 2016
Accepted 17 January 2018

KEYWORDS
Semantic memory; latent
semantic analysis;
categorisation; abstraction

Abstraction is an essential mechanism to learn and rep-
resent meaning in memory. Theoretical notions of
abstraction vary across research domains, but tend to
emphasise aggregation across exemplars to a central
“average” representation (Reed, 1972), transforming sen-
sorimotor input to a deeper knowledge representation
(Barsalou, 1999; Damasio, 1989), or reducing idiosyn-
cratic dimensions to focus on those attributes most
common to members of a category (Rosch & Mervis,
1975). In modern computational models of semantic
memory, notions of abstraction are formally specified
and applied to real-world linguistic data to evaluate the
structure of semantic memory that the mechanisms
would produce.

Modern distributional semantic models (DSMs; e.g.
Landauer & Dumais, 1997) have become immensely
popular in the cognitive literature due to their success
at fitting human experimental data, their utility in real-
world applications, and their insights as models of cogni-
tion. In general, DSMs learn distributed representations
for word meanings from statistical redundancies across
linguistic experience. Because they are often applied to
text corpora as learning data, DSMs are also referred to
as “corpus-based” models, although, in principle, their
learning mechanisms can be applied to covariational
structure in any dataset (e.g. perception, speech, etc.).

Despite the wide range of DSMs in the literature, they
virtually all share the characteristic that they are

prototype models: They attempt to collapse the entire
set of a word’s linguistic exemplars into a single econ-
omical representation of word meaning. However, this
practice is in contrast to the literature on categorisation
that has largely disposed of prototype representations
in favour of exemplar-based models. In this paper, I high-
light the contradiction between literatures, and attempt
to build a case for exemplar-based models of distribu-
tional semantics.

Abstraction is a core mechanistic principle of DSMs.
Most DSMs apply some form of dimensional reduction
to words’ experienced linguistic contexts, essentially
abstracting over the dimensions that are idiosyncratic
to each context, and converging on the stable
higher-order dimensions that optimally explain the
covariational pattern of words across contexts. Aggre-
gation is also a core principle of virtually all DSMs –
multiple linguistic contexts are averaged across,
either explicitly or implicitly, resulting in a single
central representation for the word that is stored. A
word’s vector pattern across these reduced dimensions
is thought to represent its generic meaning. Hence,
each DSM formally specifies an abstraction mechanism
by which episodic memory is transformed into seman-
tic memory; in this sense, DSMs embody the idea of
abstraction and allow us to quantitatively evaluate
various process explanations of aggregation and
dimensional reduction.
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The particular mechanisms posited for abstraction in
DSMs differ in several theoretically important ways, and
include reinforcement learning, probabilistic inference,
latent induction, and Hebbian learning. Enumerating
the differences between the mechanisms used by each
model is beyond the scope of this article (see Jones,
Willits, & Dennis, 2015 for a review); but all DSMs essen-
tially specify an abstraction mechanism to formalise the
classic notion in linguistics that “you shall know a word
by the company it keeps” (Firth, 1957). The theoretical
points that follow apply broadly to all DSMs that posit
abstraction at learning, regardless of specific learning
mechanism. As two examples of DSMs with very different
architectures and learning mechanisms,1 briefly consider
classic Latent Semantic Analysis (LSA; Landauer &
Dumais, 1997) and the newest DSM – Google’s
word2vec (Mikolov, Sutskever, Chen, Corrado, & Dean,
2013).

LSA begins with a word-by-document frequency
matrix of a text corpus. This initial “episodic” matrix rep-
resents first-order relationships: words are similar if they
have frequently co-occurred in contexts. LSA then
applies singular value decomposition to this episodic
matrix (cf. factor analysis) retaining only the 300 or so
dimensions that account for the largest amount of var-
iance in the original matrix. Singular value decompo-
sition serves as an abstraction mechanism, reducing
the dimensionality and emphasising second-order
relationships that were not obvious in the episodic
matrix. In the reduced space, words will be similar if
they occur in similar contexts, even if they never directly
co-occur (e.g. category exemplars and synonyms). But
much of the information idiosyncratic to specific con-
texts that would be required to reconstruct the full orig-
inal episodic matrix has now been lost. Hence, LSA
achieves an abstracted semantic representation by
applying truncated SVD to the history of episodes.

Mikolov et al.’s (2013) word2vec achieves a similar
outcome, albeit in a rather different way. Word2vec is a
“neural embedding”model that has been extremely suc-
cessful in computational linguistics. To a cognitive scien-
tist, the model is essentially a feedforward connectionist
network (cf. Rumelhart networks explored in Rogers &
McClelland, 2004) with some optimisation tricks that
allow it to be scaled up to large amounts of text data.
Word2vec has localist input and output layers, each
with one node for each word in the corpus. The input
and output layers are fully connected via a hidden
layer of ∼300 nodes, which allows the model to learn
nonlinear patterns in the text corpus. When a word is
experienced, the other words that it occurs with serve
as its context. With the node for the context words acti-
vated, activation feeds forward to the output layer with

the desired output being the activation of the correct
target word, with other words being inhibited. The
error signal (difference between true and observed
output pattern) is then backpropagated through the
network to increase the likelihood that the correct
word will be activated at the output layer given the
input words in the future. Hence, the context is used to
predict the word.2 After training on a large text corpus,
a word’s pattern across the hidden layer begins to
show higher-order relationships that go beyond the
first order relationships it was being trained to predict.
Very much like LSA’s reduced representation, the
reduced representation across word2vec’s hidden layer
has now learned similarity between words that are pre-
dicted by similar contexts. While LSA used SVD for data
reduction, word2vec used backpropagation; but both
models essentially abstract semantics from episodes.

These similarities can be seen across all of the DSMs –
all achieve the desired outcome of a reduced abstraction
of word meaning from episodic co-occurrences. The jury
is still out on which (if any) mechanism is the most plaus-
ible model of how humans construct semantic represen-
tations. But one property that is clear to all of these
“abstraction at learning” DSMs is that they may be classi-
fied as prototypemodels. The models attempt to create a
single abstracted representation of meaning for each
word, and this single semantic representation is what is
stored and used in downstream fitting of psycholinguis-
tic data.

There are many similarities in the literatures on
semantic memory and categorisation, enough that it is
likely that the cognitive mechanisms that subserve
semantic learning and category learning may be
heavily related to each other. But one key contradiction
stands out: While the literature on categorisation has
very much converged on the superiority of exemplar-
based models, DSM models are all essentially prototype
models.

Lessons from categorization models

Categorisation and semantic abstraction have many
similarities, and it is commonly believed that the
process of categorisation may be used to produce
semantic structure (see Rogers & McClelland, 2011 for a
review). The categorisation literature has been domi-
nated for many years by a debate between prototype
and exemplar-based theories. Prototype theories are
based largely on principles of cognitive economy cham-
pioned by Rosch and Mervis (1975). Prototype theories
(e.g. Reed, 1972) posit that as category exemplars are
experienced, humans gradually abstract generalities
across them and construct a single prototypical
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representation of the category that is the central ten-
dency of its exemplars; categorisation of a new exemplar
depends on its similarity to category prototypes. In con-
trast, exemplar theories (e.g. Medin & Schaffer, 1978;
Nosofsky, 1988) posit that humans store every experi-
enced exemplar in memory, and categorisation of a
new exemplar depends on its weighted similarity to all
stored exemplars.

Perhaps more than any other sub-field of cognition,
the categorisation literature has very much converged
on the conclusion that exemplars have beaten out proto-
types as models of human categorisation (but see
Murphy, 2016, for a careful discussion of the limitations
of both). In addition to exemplar models providing a
better quantitative account of human categorisation
data, there are many theoretically differentiating effects
that are easily explainable by exemplar models but that
are simply impossible under prototype accounts. For
example, category structures with nonlinearly separable
structure (e.g. XOR) are easily learned by humans, but
impossible to account for by single prototype models
(Ashby & Maddox, 1993; Nosofsky, 1988). Even when
using linear category structures that should be condu-
cive to prototype models, exemplar models still give a
superior quantitative fit to human data (Stanton,
Nosofsky, & Zaki, 2002). Hence, it is certainly odd that
the field of distributional semantics is dominated by pro-
totype models, while the field of categorisation has
largely dismissed them in favour of exemplar accounts.

In the typical categorisation experiment, subjects are
presented with stimulus patterns – exemplars –
accompanied by a category label. At test, the exper-
imenter can present old or new exemplars, and the
subject responds with the most appropriate category
label for each stimulus. We can think of distributional
learning of semantics in an analogous way: The context
is the exemplar pattern, and the word is the label of
the category to which this particular exemplar belongs.

In word2vec, for example, the other words that occur
with a target word are used as the context, or exemplar
pattern, and the correct label is the target word. So in the
sentence “I am drinking a glass of milk,” drinking + glass
are used as the context to predict milk. The exemplar
pattern for milk in this context is a localist vector with
drinking and glass set to one and all other words set to
zero. Across many language exemplars that are all of
the category milk, word2vec homes in on a pattern of
activation across its hidden layer that optimally predicts
milk as the label given any language exemplar context
that contains milk. In addition, the hidden layer pattern
for milk will be very similar to other words that are pre-
dicted by similar contexts such as juice and wine. So in
all DSMs, an exemplar can be thought of as the context

pattern of other words that a target word (the category
label) occurs with. This reframing of semantic learning
is very similar to current state-of-the-art exemplar-
based models of categorisation in which “… a stimulus
is stored in memory as a complete exemplar that
includes the full combination of other features. Thus
the ‘context’ for a feature is the other features with
which it co-occurs.” (Kruschke, 2008, p. 273). However,
DSMs aggregate over the multiple exemplars to create
an economical prototype.

Hence, most DSMs collapse all instances of a word’s
context into a single representation, or point in high-
dimensional space, very much consistent with represen-
tational economy (Rosch, 1973). This process produces
huge issues in semantic representation that are known
to the field – for example, a homograph like bank has
both senses of its meaning collapsed into a single rep-
resentation, despite the fact that they are very different
context patterns. As a result, the representation
becomes a weighted average (biased to the more fre-
quent sense) of the multiple senses of bank. A homo-
graph like bank, with multiple unrelated senses, has a
similar characteristic structure to experimental stimuli
with XOR structure. But the prototype collapsing is a
problem for all words with graded amounts of polysemy
that would be captured by an exemplar-based model but
are abstracted over by a prototype-based DSM. Multiple
distinct statistical structures that map onto the same
label are collapsed in most DSMs, leading to a range of
both theoretical and practical issues for the models.
But far from rare, multiple senses and contextual modu-
lation patterns are really the norm in linguistic infor-
mation (Jones, Dye, & Johns, 2016; Kintsch, 2001).

Lessons from multiple-trace models

Posner and Keele’s (1968) schema abstraction exper-
iment is a classic in semantic memory research, and
was a key laboratory phenomenon that lead Tulving
(1972) to divide declarative memory into separate
semantic and episodic stores in his modular taxonomy.3

In their task, Posner and Keele presented subjects with
random dot patterns as exemplars of multiple categories.
Unbeknownst to subjects, the exemplars they experi-
enced were created from parent prototype patterns for
each category. A category exemplar was a random per-
turbation (low or high distortion) of the prototype
pattern, but prototypes were never shown to subjects
during learning. There are many interesting effects
from the schema abstraction task, but a key finding is
that while subjects at test are better at classifying exem-
plars they were trained on, they were better at the pro-
totype than new exemplars. In addition, with a delay
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between training and test, performance on the proto-
type (which was never experienced) is better than per-
formance on the old exemplars that subjects were
actually trained on. Furthermore, exemplars and proto-
types follow different trajectories of decay as a function
of retention time.

This pattern of results suggests that subjects are
storing experienced exemplars in episodic memory at
the same time as they are creating an abstracted proto-
type for the category. The differential decay patterns also
suggest that these information sources are stored by dis-
tinct memory systems, and that semantic memory is
more resilient to decay than is episodic memory. The
pattern would seem to argue in favour of DSMs that
use abstraction at encoding to create a prototypical
pattern, and episodic memory is then explained by a dis-
tinct model.

However, Hintzman (1984; 1986) provided a classic
demonstration using his MINERVA 2 memory model
that questioned whether the effects seen in Posner
and Keele’s (1968) schema abstraction task suggest the
existence of a prototype in memory at all. Briefly,
MINERVA 2 is a instance-based memory model: it
stores a pattern for each exemplar in episodic memory,
but has no semantic memory. Multiple presentations of
an exemplar simply lay down multiple memory traces.
The model explains a range of episodic memory effects
such as recognition, judgments of frequency, etc. But it
can also perform the classification task used in the
schema abstraction experiments. When presented with
a probe pattern (an old or new exemplar) MINERVA 2
simultaneously computes the probe’s similarity to all
stored exemplar traces in memory, and the retrieved cat-
egory label for the probe is weighted by the scaled simi-
larity of the probe to all exemplars (cf. Nosofsky’s, 1986
exemplar-based model of categorisation). The retrieved
pattern is referred to as an “echo” from memory, and is
based loosely on the principle of harmonic resonance.
Although it has no semantic memory per se, MINERVA
2 reproduces the key phenomena in schema abstraction
that had previously been seen as evidence for dual epi-
sodic and semantic stores. The model performs better
on old exemplars at immediate test (but better on the
prototype than new exemplars), and performance on
the prototype is better than the training exemplars
after forgetting. Superior performance on the prototype
is due simply to the fact that it is the central tendency of
the exemplar patterns; hence the prototype’s pattern is
distributed across the exemplars. The performance tra-
jectories of exemplars and the prototype as a function
of delay have distinct slopes.

Hintzman’s (1984; 1986) demonstration is well
covered in most contemporary memory textbooks – it

is an elegant existence proof that phenomena used to
argue for the existence of semantic memory may actually
be due to the process of retrieval from episodic memory.
In the interest of parsimony, there may be no need to
posit an additional semantic store when a model that
has only an episodic store can produce all the phenom-
ena that a model with two distinct stores could. This
claim bears considerable similarity to other instance-
based models of memory and exemplar-based models
of categorisation. So why mention historical cases like
MINERVA 2 and schema abstraction here? Because one
of the first successful exemplar-based DSMs in cognitive
science extends MINERVA 2’s architecture exactly to a
text corpus, and makes the same theoretical claims.

Exemplar-based semantic models

While it is true that most DSMs are prototype models,
there is a small family of exemplar-based semantic
models that diverge from the usual quest for cognitive
economy. Exemplar-based semantic models are also
referred to as “retrieval-based” models in the cognitive
literature or simply as “memory models” in compu-
tational linguistics. Rather than positing abstraction as
a dimensional reduction mechanism at learning, they
store all of a word’s episodic contexts, and abstraction
is a consequence of retrieval from episodic memory.
Hence, there is no semantic memory per se in these
models, only episodic memory. In exemplar-based
models, phenomena that have typically been attributed
to semantic memory are an emergent artifact of retrieval
from episodic memory. The locus of semantics is not at
encoding, but at retrieval. These models have grown
from exemplar-based models in categorisation, and
instance-based models in memory. Intuitively, many
people believe the idea that we store everything we
ever experience rather than creating and storing an
economical abstraction is far-fetched. But given the
success of exemplar-based semantic models at account-
ing for an impressive array of semantic behaviours
without any semantic memory, and the current resur-
gence of usage-based theories in linguistics (Goldberg,
2006; Johns & Jones, 2015; Tomasello, 2003), exemplar-
based semantic models deserve a closer look.

Kwantes (2005) extended Hintzman’s (1986) MINERVA
2 to explain semantic phenomena with words by training
it on a text corpus. In his Constructed Semantics Model
(CSM),4 each word’s representation in memory is a
binary vector that reflects whether it occurred in a docu-
ment or not – its episodic history. Note that memory in
CSM is the same word-by-document matrix that LSA
and other DSMs learn from. But where LSA applies
abstraction to this episodic matrix and stores a higher-
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order representation, CSM stores the episodic matrix
itself. When a word is presented to CSM, its episodic
vector is used as a probe as in MINERVA 2. Each word
in memory is activated relative to its contextual overlap
with the probe word, and the echo pattern is then the
similarity-weighted sum of all traces in memory, exactly
as in Hintzman (1986). Words that have similar contex-
tual histories to the probe word will contribute more of
their pattern to the echo than will words with rather
independent histories, and the echo for the word is
then an ad hoc, and probe specific, prototype created
by the this process of retrieval from episodic memory.
To compute the semantic similarity between two
words, one simply computes the cosine between their
two echo patterns.

It is fairly obvious how CSM can determine similarity
for words that frequently co-occur with each other
(their echo cosines would be a noisy amplification of
the terms’ likelihood of co-occurrence relative to
chance). But higher-order semantic similarities also
emerge from this process of retrieval, even between
two words that have zero contextual overlap. For
example, two synonyms would not activate each other
at all because they have never co-occurred in the text
corpus, but they would activate many of the same
other words due to their similar contextual usage; as a
result, their retrieved echo patterns are extremely
similar. Models such as LSA and word2vec accomplish
this second-order statistical inference while learning a
corpus, whereas CSM does it while retrieving information
from episodic memory.

Hence, semantic abstraction in CSM is a parallel to
schema abstraction in MINERVA 2: the prototype is an
emergent property of retrieval from episodic memory.
As Kwantes (2005) puts it, CSM “… takes what it knows
about a word’s contexts and uses retrieval to estimate
what other context might also contain the word”
(p. 706). The model bears obvious similarity in outcome
to prototype-based DSMs, but it differs considerably in
the psychological mechanism that it attributes abstrac-
tion to; in CSM, it is the well-established process of retrie-
val that uncovers deeper semantic structure.

As with Hintzman’s (1986) demonstration, CSM is a
more parsimonious model of semantics – it does not
require two separate stores or processes to explain
semantic and episodic memory, and serves as an exist-
ence proof that semantic phenomena may be explained
by a model that only posits an episodic memory store. In
addition, the success of the model is reinforced by con-
verging evidence supporting exemplar-based models
in the fields of categorisation and recognition. Further-
more, there are real benefits to CSM that allow it to
handle phenomena not possible by abstractionist

DSMs. For example, it can handle polysemous words
because the multiple senses of the words are still rep-
resented and are dissociable with nonlinear activation
of exemplars (cf. Nosofsky, 1986). Memory traces
whose context fits one or the other sense of a word
can be differentially activated in CSM. Abstractionist
DSMs, on the other hand, collapse multiple senses of a
word to a single point in high-dimensional space,
losing the distinction in favour of an averaged
representation.5

Kwantes (2005) work suggests that the same basic
memory system could underlie both episodic and
semantic knowledge, and his work has given rise to a
handful of other models that have explored semantic
abstraction as a memory retrieval operation rather than
a learning mechanism. For example, Dennis (2005; see
also Thiessen, 2017) presented a memory-based model
of verbal processing, including semantics and syntactic
information as retrieval from long-term memory and
constraint satisfaction in working memory. The model
mechanisms are based on a Bayesian interpretation of
string edit theory from linguistics. Dennis’ model posits
that processing a word or sentence is at its core a
memory-retrieval process.

Johns and Jones (2014, 2015; see also Thiessen &
Pavlik, 2013) extended this previous work into an exem-
plar-based model, based on a hybrid of Hintzman’s
MINERVA 2 (1986) and Jones and Mewhort’s (2007)
BEAGLE architectures, that encodes sentences from a
natural language text corpus into individual memory
exemplars. The retrieval mechanism is used to generate
expectancies about the future structure of sentences,
much in the same way as Kwantes (2005) constructs a
word’s meaning as a prediction of the future contexts
in which it might occur. Johns and Jones found that
such an exemplar-based model successfully accounted
for a wide range of sentence processing tasks that had
commonly been seen as evidence for rule-based abstrac-
tion of linguistic constraints. Johns, Jamieson, Crump,
Jones, and Mewhort (2016) extended this model to
demonstrate that rule-based grammatical behaviour is
a natural emergent property of retrieval from a model
that stores exemplars of linguistic experience. Hence,
both semantics and syntax may very well be constructed
properties of retrieval from episodic memory rather than
abstracted structures or rules, per se.6

Exemplar-based models in natural language
processing

It is tempting to think of exemplar-based models as a
psychology centric theory with little, if any, practical sig-
nificance. After all, why would a computing scientist
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want to store all data instances? Data compression and
abstraction are core goals to information retrieval appli-
cations. However, exemplar models are now seeing con-
siderable use in natural language processing (NLP) as
well, for the very same reasons that they are preferred
in categorisation: the affordance of nonlinear activation
of memory exemplars given a probe.

A classic example in NLP was presented by Daele-
mans, Van Den Bosch, and Zavrel (1999), showing that
abstractionist models lose exceptions to common pat-
terns in a variety of language processing tasks. Prototype
models offer the best single representation, but the dis-
tribution of meanings and usage rules is heavily skewed
in natural languages – prototype models discard the tail
(cf. Johns & Jones, 2010 in lexical semantics). Daelmans
et al. found that retaining exceptional training instances
in memory was actually beneficial for generalisation
accuracy across a wide range of common NLP tagging
tasks, and they argue that the field needs to take exem-
plar-based memory models much more seriously.

More recently, exemplar-based models have seen a
resurgence in NLP, offering better accuracy on applied
problems that the field had been deadlock on with
abstractionist models. For example, Erk and Padó
(2010) used an exemplar-based memory model in
which separate exemplars were encoded for words and
sentences (cf. Dennis, 2005; Johns & Jones, 2015). They
found superior performance on a practical paraphrase
task using this architecture due to the nonlinear acti-
vation of related exemplars – this behaviour allowed
the model to “ignore” the exemplars that were other
senses of a target word, which would have been a col-
lapsed noise source in an abstractionist model. In fact,
their exemplar model outperformed all then state-of-
the-art paraphrasing models, and has considerable simi-
larity to exemplar-based memory models in cognitive
science (e.g. Thiessen & Pavlik, 2013).

However, an issue with the application of exemplar-
based models to applied NLP tasks will always be proces-
sing time. Exemplar-based models are fast to train, but
require substantial and even computationally impractical
memory resources, and are slow to retrieve the correct
answer. In contrast, prototype models embody data
compression, putting all the time into training the
single best representation, but then the search time for
a similar instance in memory is much more efficient. In
applied problems, such as information retrieval, access
time is everything. However, there have been many suc-
cessful hybrid models emerging in NLP that balance
accuracy with generalisation and speed. Multiple proto-
type models (e.g. Reisinger & Mooney, 2010) have
become popular to represent the distinct senses of a
word without needing to store all exemplars, and are

quite similar to multiple prototype theories of categoris-
ation (Minda & Smith, 2001). Similarly, there has been
considerable success in NLP with models that represent
words as regions, rather than points, in distributional
space (Erk, 2009; Vilnis & McCallum, 2015). These
models preserve nonlinear activation of exemplars, but
while embedding them in a more reasonable search
space with attractor basins. The practice has a similar
outcome to setting a threshold on the similarity function
in exemplar-based psychological models to reduce the
activation of irrelevant items (which is precisely what
Kwantes, 2005, model does). This also suggests consider-
able potential for the application of hybrid rule-and-
exception models from human category learning (e.g.
Nosofsky, Palmeri, & McKinley, 1994).

Also of interest in practical NLP applications is the
recent rise of so-called memory networks (Weston,
Chopra, & Bordes, 2015) that have proven very successful
at open question answering with complex real-world text
materials. Memory networks use a long-term exemplar
memory network as a dynamic knowledge base, and
have produced state-of-the-art results with difficult
tasks such as question answering, summarisation, and
text-based inference (Bordes, Usunier, Chopra, &
Weston, 2015).

Discussion

Meaning is a fundamental human attribute that perme-
ates all cognition, from low-level perceptual processing
to high-level problem solving, and everything in
between. Semantic abstraction is what makes us a
powerful species – informavores. The idea that humans
construct and store abstracted semantic representations
for concepts is almost sacred in cognitive science. But it
is also at odds with conclusions from other areas of cog-
nition, such as categorisation and recognition, which pre-
sumably tap aspects of the same cognitive mechanism as
semantic learning. And exemplar-based DSMs suggest
that, like Hintzman’s (1986) demonstration, we might
be able to explain all the same semantic phenomena
without a semantic memory. According to exemplar-
based DSMs, semantic memory is a process, not a
structure.

It is tempting to see exemplar-based DSMs as “cheat-
ing:” If the model simply stores all data, then it can
compute an accurate semantic representation whenever
one is needed. But the theoretical claim is profound – it is
a frightening proposal that we may not actually have
semantic memory. Your interpretation of the words
you are reading right now may be constructed on the
fly as an artifact of retrieving the visual patterns from epi-
sodic memory. Our phenomenology of meaning may be
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continuously constructed as the interaction between
stimuli, episodic memory, and the memory retrieval
mechanism that mediates them (Kintsch & Mangalath,
2011). But exemplar-based DSMs should also put us at
ease – they provide converging evidence that perform-
ance across multiple cognitive domains (e.g. categoris-
ation, recognition, semantics) may be explained by the
same unified cognitive principle. Exploring exemplar-
based DSMs also has practical considerations for edu-
cation, where exemplar-based models of categorisation
have been successfully applied (Norman, Young, &
Brooks, 2007; Nosofsky, 2017). And since humans are
both the producers and consumers of linguistic infor-
mation in all practical NLP tasks, it is also reassuring
that the recent findings in NLP may suggest that the
best models to serve humans in these tasks bear con-
siderable similarity to the models we believe human cog-
nition has evolved to use.

How might exemplar-based semantic models be
implemented in neural hardware? A common criticism
against exemplar theory is that it is stranded at the com-
putational level of Marr’s hierarchy, but the transition to
implementation is untenable. The claim that we simply
store everything that we experience seems unintuitive
and goes against the core principle of cognitive
economy. However, Hintzman (1990) has shown how
an exemplar-based memory model such as MINERVA 2
can be easily implemented within a neural network fra-
mework. In addition, there is a small body of work
attempting to understand and formalise biologically
plausible exemplar theories of recognition and categoris-
ation, which have typically pointed to a role for the hip-
pocampus and surrounding medial temporal lobe
structures (e.g. Pickering, 1997). Futhermore, Becker’s
(2005) models cleanly demonstrate that hippocampal
coding would give rise to distinct memory represen-
tations for highly similar items.

More recent work in categorisation is now focusing on
the basal ganglia and striatum as giving rise to the oper-
ations needed for exemplar models (see Ashby & Rose-
dahl, 2017, for a review). Ashby and Rosedahl recently
introduced a neural implementation of exemplar
theory, in which a key role for the formation of category
exemplars is assigned to synaptic plasticity at cortical-
striatal synapses. Rather than storing strict exemplars,
per se, their model adds nodes and manipulates connec-
tivity between striatal and sensory neurons, achieving
the same effect as classic exemplar models. Ashby and
Rosedahl show that their neural implementation of
exemplar theory is mathematically equivalent to classic
exemplar theories such as the General Context Model
(Nosofsky, 1986), and makes identical predictions. The
work of Ashby & Rosedahl establishes an important

equivalence between classic exemplar based models
and neural exemplar theories. Not only do exemplar the-
ories provide superior quantitative fits, but increasing
biological plausibility also extends predictions to find-
ings from cognitive neuroscience (e.g. Ashby & Valentin,
2016; Hélie, Paul, & Ashby, 2012; Valentin, Maddox, &
Ashby, 2014).

The predominance of prototype-based DSMs in the
literature may be partially due to Chomskian presump-
tions in linguistics that the job of the cognitive mechan-
ism is to abstract the rules of a grammar from instances.
This abstractionist presumption may have implicitly
guided architectural decisions in early DSMs. In addition,
the notion of cognitive economy (Rosch & Mervis, 1975)
was a guiding principle to models of semantic abstrac-
tion. However, both of these theoretical presumptions
are currently being revisited given the strength of
usage-based theories in linguistics (Tomasello, 2003).
But a more likely reason for the preference of prototype-
over exemplar-based DSMs in practice is that exemplar
models are much more computationally expensive
than prototype models. The front-end data compression
core to prototype DSMs means that they require far less
memory to store, and are far more efficient to use, than
exemplar-models.

Development of DSMs in general has benefited from
cross-disciplinary interactions with applied fields, such
as information retrieval. Put simply, these models are
both theoretically informative to cognitive science, and
useful for practical NLP tasks. However, the utility of
the model should not constrain its theoretical informa-
tiveness. Prototype DSMs are needed because they
provide an efficient and economical estimate of a
word’s aggregate meaning. Exemplar-based DSMs
contain more information, but the retrieval problem
becomes intractable and untenable for practical tasks.
Nobody wants to type a search query into Google and
have it determine what you mean by activating and
weighting exemplars in real time; the time-intensive
computation should have been completed and stored
long before you type in the query words.

But the constraint of utility in NLP may have had the
unwanted effect of guiding our theoretical models of
the mind away from exemplar models. There are many
differences between the brain and computational data-
bases in how they represent and retrieve information.
The search and abstraction processes used in cognition
need not be identical to those best for database
search. Models of cognition have long assumed that
memory exemplars can be activated in parallel, although
the code we use to implement this in a model will usually
use a loop routine. This is a distinct difference between
the two disciplines: Looping through all exemplars is
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not an efficient method of, for example, word similarity
matching, but it may well be the correct model of how
humans do it. The constraints of our current compu-
tational hardware should not be used as reasons to
discard otherwise superior fitting models of human cog-
nition, such as exemplar models.

Notes

1. LSA and word2vec are formally equivalent: Levy and
Goldberg (2014) demonstrated analytically how the
SGNS architecture of word2vec is implicitly factorizing
a word-by-context matrix whose cell values are shifted
PMI values.

2. The model’s direction can also be inverted, using the
word to predict the context (SGNS) rather than using
the context to predict the word (CBOW).

3. The bulk of the evidence used by Tulving to argue for dis-
tinct semantic and episodic memory systems was from
neuropsychological patients.

4. The model is simply referred to as the “semantics model”
in Kwantes’ (2005) original paper, but “Constructed
Semantics Model” has become it’s popular name
among semantic modelers because semantic represen-
tations are constructed on the fly from episodic
memory in the model.

5. An exception here is the topic model, which uses con-
ditional probabilities, so it is not subject to metric restric-
tions of spatial models (e.g., Griffiths, Steyvers, &
Tenenbaum, 2007).

6. And essentially the same architecture has been used by
Goldinger (1998) to explain “abstract” qualities of spoken
word representation from episodic memory retrieval.
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