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Abstract 

The semantic memory literature has recently seen the emergence 
of predictive neural network models that use principles of 
reinforcement learning to create a “neural embedding” of word 
meaning when trained on a language corpus. These models have 
taken the field by storm, partially due to the resurgence of 
connectionist architectures, but also due to their remarkable 
success at fitting human data. However, predictive embedding 
models also inherit the weaknesses of their ancestors. In this paper, 
we explore the effect of catastrophic interference (CI), long known 
to be a flaw with neural network models, on a modern neural 
embedding model of semantic representation (word2vec). We use 
homonyms as an index of bias depending on the order in which a 
corpus is learned. If the corpus is learned in random order, the final 
representation will tend towards the dominant sense of the word 
(bank ! money) as opposed to the subordinate sense (bank ! 
river). However, if the subordinate sense is presented to the 
network after learning the dominant sense, CI produces profound 
forgetting of the dominant sense and the final representation 
strongly tends towards the more recent subordinate sense. We 
demonstrate the impact of CI and sequence of learning on the final 
neural embeddings learned by word2vec in both an artificial 
language and in an English corpus. Embedding models show a 
strong CI bias that is not shared by their algebraic cousins. 

Keywords: semantic models; word2vec; neural networks; 
catastrophic interference; statistical learning  

Introduction 
Distributional models of semantic memory (DSMs; e.g., 

Landauer & Dumais, 1997) have been hugely successful in 
cognitive science, explaining how humans transform first-
order statistical experience with language into deep 
representations of word meaning. These models are all 
based on the distributional hypothesis from linguistics 
(Harris, 1970) and specify mechanisms to formalize the 
classic notion that “you shall know a word by the company 
it keeps” (Firth, 1957). There are dozens of DSMs in the 
cognitive literature now, with learning mechanisms inspired 
by different theoretical camps ranging from Hebbian 
learning to probabilistic inference (see Jones, Willits, & 
Dennis, 2015 for a review). The commonality to all these 
models is that they use co-occurrence counts of words 
across contexts in linguistic corpora, and exploit these 
statistical redundancies to construct semantic 
representations.  

There has been a recent resurgence of neural network 
models across cognitive science and machine learning. This 
resurgence has included very successful predictive DSMs 
within connectionist architectures based on principles of 
error-driven learning core to theories of reinforcement 

learning. Earlier work had explored neural networks to learn 
distributed semantic representations from artificial 
languages using recurrent networks (e.g., Elman, 1990) and 
feed-forward networks (Hinton, 1986). But neural networks 
were essentially non-existent in the 1990s and early 2000s 
as models that scale up and learn from natural language 
corpora. Rather, the field became fixated on algebraic 
models based on dimensional reduction mechanisms such as 
singular value decomposition applied to a matrix of word 
counts across contexts in a corpus (e.g., classic Latent 
Semantic Analysis; Landauer & Dumais, 1997).  

However, the recent literature has hugely reversed this 
trend, with the emergence of predictive neural network 
models, and the observation that they tend to outperform 
classic models on most tasks of semantic similarity that are 
commonly used in natural language processing. Rather than 
counting words in contexts, these models predict the word 
given the context, and backpropagate the error-signal 
through hidden layers in a neural network. Although a rather 
simple architecture, and essentially the same one studied by 
Rogers and McClelland (2004) in their seminal work, these 
predictive models have rapidly risen to the top of the DSM 
battle in their ability to account for human data across a 
range of tasks.  

The standard predictive network currently discussed in 
the literature is Mikolov et al.’s (2013) word2vec model1. 
Word2vec is a feedforward neural network with localist 
input and output layers that contain one node per word in 
the vocabulary, and a hidden layer of ~300 nodes that is 
fully connected to both input and output layers. When a 
linguistic context is sampled (e.g., “save money bank”) the 
target node is activated at the input layer (+bank) and 
activation is forward propagated to the output layer, with the 
desired output being the observed context words (+save, 
+money). The error signal (observed output – desired 
output) is applied to the network with backpropagation to 
correct the weights and make it more likely the next time 
this target word is encountered that the correct output 
pattern will be generated. Although prediction is used to 
train the network, it is the final pattern of weights across the 
input-to-hidden layer that are exported and used as deep 
semantic representations of word meaning. Two words that 

                                                             
1 The word2vec architecture has two possible model directions: 

The context may be used to predict the word (referred to as a 
CBOW), or the word may be used to predict the context (a 
skipgram). Although the theoretical claims here apply broadly to 
neural network models, and hence, both directions in word2vec, 
we will use skipgram as our demonstration example because it 
maps conceptually onto most connectionist models.  



have similar vector patterns across these weights are 
predicted by similar contexts, even if they never co-occur 
with each other, akin to (but superior in data fit) the second-
order inference vectors learned by traditional algebraic 
DSMs.  

Word2vec has received considerable attention in the 
machine learning literature due to its ability to outperform 
all previous models (Baroni et al., 2014). To cognitive 
science, this success is of considerable interest as word2vec 
implements a potentially biologically plausible neural 
architecture and links to classic theories of reinforcement 
learning (e.g., Roscorla & Wagner, 1972), drawing 
theoretical connections to other areas of cognition with a 
unified mechanism. One feature of particular interest in 
neural embedding models is that they are incremental 
learners, in contrast to earlier algebraic DSMs which were 
largely batch learners. The incremental learning of neural 
embedding models has been taken by some as additional 
evidence in favor of cognitive plausibility of the models.  

While the hype surrounding neural embedding DSMs is 
certainly warranted given their recent success at fitting 
human data, it is important to remember that the models also 
inherit the weaknesses of their predecessor neural networks. 
One weakness in particular that models such as word2vec 
are likely to have is catastrophic interference (CI): The 
tendency of neural networks to loose previously learned 
associations when encoding new ones. In this sense, the 
positive attribute of neural embedding DSMs being 
incremental learners is also what opens them up to a 
potentially serious flaw that does not exist in their batch 
learning algebraic counterparts. The goal of this paper is a 
first attempt to document the extent to which CI is affecting 
the semantic representations learned by word2vec in 
particular, although the problem of CI will apply uniformly 
across all neural embedding DSMs that use backpropagation 
as a learning mechanism.  

 
Stability-Plasticity Dilemma in Neural Networks 

The stability-plasticity dilemma (Grossberg, 1982; 
Hasselmo, 2017) refers to the problem of any learning 
system to learn new stimuli while preventing the new 
learning from distorting existing learning. We need to 
balance memory for individual exemplars with abstraction, 
recency with primacy, and it is optimal to preferentially 
strengthen memories that are more likely to be needed in the 
future. While all cognitive systems gradually forget 
information, biological organisms exhibit gradual forgetting 
of old information as new information is acquired. In 
contrast, artificial neural networks have long been known to 
forget catastrophically. Catastrophic interference (CI) is thus 
defined as the sudden and complete loss of previously 
learned associations when learning new associations (see 
French, 1999 for a review). CI is a consequence of using 
backpropagation as a learning mechanism to reuse neural 
connections to tune learning, and is a key flaw to all 
feedforward neural embedding architectures that are 
currently used as DSMs.  

McClosky and Cohen’s (1989) seminal work trained a 
standard multilayer network to learn single-digit “ones” 
arithmetic facts (e.g., 1 + 1, 9 + 1) using backpropagation 
until the network had perfectly learned the associations. 
They next trained the same network on a new set of single-
digit “twos” facts (e.g., 2 + 1), until the network had been 
trained to respond correctly to all of them. While the 
network was able to correctly answer the twos facts, it had 
completely lost the previously learned ones facts—the 
associations that had been trained to zero error were now 
lost completely. The learning of new associations with 
backpropagation overwrote the previous learning. The CI 
pattern was duplicated in a second experiment by McClosky 
and Cohen by simulating standard tasks of paired associate 
word learning. Further, Ratcliff (1990) demonstrated that in 
standard sequential learning paradigms, backpropagation 
networks catastrophically forget previous items as new 
items are learned, unlike humans performing the same tasks.  
 
Using Homonyms to Measure Representational 
Bias in Semantic Space 

The standard architecture used by neural embedding 
models such as word2vec is susceptible to CI, but it is 
unclear if, or to what extent, CI would affect the final 
semantic representation. Word2vec uses predictive 
association for learning (e.g., bank ! save + money) and 
backpropagation for error correction. But the final 
representations of word meanings are the contained in the 
vector of association weights across the input-to-hidden 
layer. It is reasonable to expect that if a word predicts very 
different contexts, such as homonyms (bank ! save + 
money; bank ! sand + river) that the final semantic 
representation for a word will be heavily dependent on the 
most recently learned sense association, potentially 
producing a great loss of the previously learned sense 
association. Hence, homonyms act similarly to classic XOR 
stimuli in experimental studies: The same output pattern is 
predicted by two (or more) orthogonal input patterns.  

The goal of this paper is to explore the impact of the 
training sequence of context/target pairs on the final 
representational space in the word2vec skipgram 
architecture. Hence, we use homonyms as an index of 
movement in semantic space. For a homonym with two 
equally frequent distinct meaning senses, the semantic 
representation of the target word in word2vec should be 
equidistant between the two opposing meanings in semantic 
space. If the homonym has a dominant and subordinate 
sense, then the final meaning will tend towards the more 
frequent dominant sense in semantic space. However, if 
contexts containing the subordinate meaning are the most 
recently learned, then CI may produce a semantic 
representation that will erroneously tend towards recency 
over the more frequent meaning. Hence, we can use 
homonyms as an elegant measure of how a word’s meaning 
differs from a randomly sampled corpus when we make 
certain sense contexts more or less recently presented to the 
backpropagation algorithm.  



Experiment 1 uses a simple engineered language 
presented to word2vec. The corpus learned is the same in all 
conditions, but the ordering of the contexts is varied (cf. 
Ratcliff, 1990). Experiment 2 scales the principles up to a 
natural language corpus where contexts containing the 
dominant and subordinate senses of the target word are 
presented to word2vec, either in random order, or in 
sequentially manipulated orders.  

Experiment 1: CI in an Artificial Language  
As an initial evaluation of CI in word2vec, we created a 

simple artificial language inspired by Elman (1990). In the 
language, there is a single homonym, bass, with two distinct 
senses—bass [fish], or bass [guitar]. There are two actors 
(man/woman) who may occur in either sense context. 
Hence, a corpus containing the simple language was created 
by randomly sampling from:  

 

Man/woman catch/eat trout/bass  
Man/woman play/pluck acoustic/bass 

 

We generated a corpus of 8,000 sentences from this 
grammar (e.g., “man catch bass,” “woman play bass,” …). 
The corpus was generated to ensure that bass occurs an 
equal number of times in the fish and guitar contexts, and a 
neural embedding model will form a semantic 
representation for bass that is an average of its two distinct 
sense contexts. To measure the semantic position of bass 
relative to its two distinct senses, we compute the cosine to 
its two sense-pure synonyms, trout and acoustic. When the 
corpus is sampled randomly, bass has an equal similarity to 
both trout and acoustic. However when the order of senses 
in the corpus is not random but favors a more recent sense, 
the position of bass is expected to tend towards the sense-
pure synonym of that sense.  

The word2vec skipgram architecture (Mikolov, et al., 
2013) was trained on the corpus of 8,000 sentences sampled 
from the artificial language in three distinct orderings: 
random, fish context first, and guitar context first. The exact 
same set of 8,000 sentences was presented to the model in 
each condition, but the sequencing was varied (i.e., LSA 
would produce the exact same representation for all three). 
In the sequenced versions, ordering was randomized but 
with the additional constraint that one sense occurred in the 
first half of the corpus, and the other sense was restricted to 
the second half of the corpus.  

Because word2vec has stochastic weight initialization, we 
ran the model for 200 replications on each ordering of the 
corpus. Each training run, the model was presented with the 
full corpus (8,000 training epochs) and we recorded the 
vector cosine of bass to trout and acoustic.  

The skipgram model was trained by minimizing objective 
function predicting a target word given its surrounding 
context, defined as the average log probability:  
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Results 
Figure 1 shows the vector cosine of bass to trout and 

acoustic in the final semantic space for word2vec across 200 
replications, while varying ordering. When the model is 
trained on a random ordering of the corpus, bass is 
equidistant to trout and acoustic. However, when all the fish 
contexts are presented first, followed by the guitar contexts, 
the resulting semantic spaces showed a very strong 
preference for the more recent sense.  

For example, if the contexts representing the fish sense of 
bass were presented first, the model learned that bass was 
synonymous with trout until the second half of the corpus 
when the new sense was introduced. With the introduction 
of a guitar sense of bass, word2vec then had to reuse the 
connection weights to learn the new context association. As 
a result, bass became synonymous with acoustic, and the 
previous prediction of fish contexts was almost completely 
erased.  

The final similarity of bass after learning the corpus in the 
order of fish-then-guitar was maximal to the sense-pure 
synonym (acoustic), and was reduced to nearly zero for the 
originally learned sense-pure synonym (trout). In contrast, 
the reverse preference is seen when the ordering of senses is 
reversed. Note that a batch model such as LSA would 
produce the behavior seen in the random case across all 
three orderings. Very similarly to the classic McClosky and 
Cohen (1989) experiments, word2vec is largely overwriting 
the learning of the first context with training on the second 
context, and this pattern is reflected in the final semantic 
representation of the homonym.  

We next varied the sense dominance of the homonym 
bass, to present a dominant and subordinate sense frequency 
in the artificial corpus. Rather than sampling randomly from 
the two senses, the subordinate sense of the homonym was 
sampled to be one-third as likely as the dominant sense. 
Hence, one sense is two-thirds more prevalent in the 
experienced sentences, and we test word2vec’s sense 
preference as a function of training sequence.  

The results are presented in Figure 2. In the two randomly 
presented conditions (two left clusters of bars), word2vec 
prefers the dominant sense of the word over the subordinate 
sense— the representation of bass was more similar (closer) 
to the dominant sense from the corpus. But a dramatic 
reversal can be seen in the ordered conditions (two right 
clusters of bars). In both of these cases, the dominant sense 
is presented first, followed by one-third as many sentences 
from the subordinate sense second. In both cases, CI shows 
its effect clearly in the final representations: there was a 
strong bias towards the more recently learned sense in the 
semantic space, despite the fact that it was less frequent than 



the dominant sense in the corpus. Even if the fish sense of 
bass was the dominant sense, recent presentations of the 
subordinate guitar sense almost completely overwrite that 
learning. Again, note that a batch model such as LSA would 
simply show a preference for the dominant sense across all 
of these presentation orders, but word2vec is influenced by 
CI to produce a recency bias that overrides the standard 
frequency bias.  

 

 
Figure 1. Cosine similarity of the homonym bass to the 

fish or guitar sense as a function of sense presentation 
order. When the corpus is sampled randomly, bass is 
equally pulled between the two senses. However when one 
sense is presented earlier in the corpus, followed by the 
other sense, bass is strongly biased towards the more 
recently presented sense. 

 
 

 
Figure 2. Cosine similarity of the homonym bass to the 

fish or guitar sense as a function of order and varied sense 
dominance. When sampled randomly, bass tends towards 
the more dominant sense. However, if the subordinate sense 
is presented more recently, it outweighs the dominant sense, 
losing the association of frequency to recency. 

Experiment 2: CI in a Natural Corpus  
We next test the influence of CI in the representational 

space learned by word2vec when trained on natural 
language from the classic TASA corpus (Landauer & 
Dumais, 1997). TASA is ideal because it contains linguistic 
contexts from textbooks with metadata that tags the topic of 
the material (e.g., Science, Language Arts, Health, etc.), 
which allowed us to select and track a sample of homonyms 
with distinct senses.  

We used the homonym norms from Armstrong, 
Tokowicz, and Plaut (2012) to identify a sample of 14 
homonyms that also exist in TASA with very distinct 
meaning senses as rated by human subjects. Of the sample 
of homonyms, half have roughly equal frequencies in TASA 
between the two senses, and half have a clear and dominant 
sense (as per frequency in TASA). An example of a sense 
balanced homonym is net—the “fabric that encloses the 
sides and back of the goal in various games (such as soccer 
or hockey)” sense occurs in an equal number of language 
arts contexts across TASA as the occurrence of the “ a net 
amount, profit, weight, or price” sense in business contexts. 
An example of a sense-balanced homonym is pupil—the 
“part of the iris of the eye” sense occurs in an equal number 
of science contexts across TASA as the occurrence of the 
“young learner in school” sense in social studies contexts. 
An example of a sense-imbalanced homonym is firm—the 
“business facility” sense occurred in business contexts 
across TASA eight times more often than did the “having a 
solid structure” sense in science contexts.  

 
Method 

  We applied a simple heuristic to classify whether a word 
had a roughly even balance between its senses, or if it had a 
bias towards one sense over the other based on the word’s 
contextual uses in TASA. If the occurrence of the homonym 
in one sense exceeded the other sense by a factor of two, we 
classified it as sense biased, and classified it as sense 
balanced otherwise. Five of the homonyms were classified 
as balanced (hamper, capital, net, slip, plane), and the 
remaining nine were classified as biased (firm, compact, 
hull, compound, pitch, cap, gum, bull, pupil).  

The distance of the homonym in semantic space must be 
measured with respect to some sense-pure synonym, 
analogous to the artificial grammar simulations that 
measured bass in respect to trout or acoustic. To do this, we 
first trained word2vec on the single sense of each 
homonym, e.g., training the model separately on the 
“student” and “eye” contexts of pupil. For each separate 
sense space, we determined the target word’s most similar 
semantic associate. Due to the stochastic noise added by the 
weight initialization process, we identified each target 
word’s closest 10 neighbors across 20 replications for sense 
1 (e.g., pupil ! student, teacher, learn, classroom, books, 
etc.) and sense 2 (e.g., pupil ! iris, cornea, eye, vision, 
etc.), and selected the single associate the was most often 
the highest ranked across the resamples.  This word will be 
considered the target word’s sense-pure semantic associate 
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as was trout and acoustic in the artificial language, and will 
be used as an anchor point to measure the target word’s 
representation as a function of corpus training order.  

With the sense-pure semantic associate identified for each 
sense of each homonym, we then trained on the entire 
corpus, which mixed the sense contexts together. In the 
random condition, the contexts for the target word were 
simply sampled in random order, as in usual applications of 
word2vec. In the other two classes of simulations, we first 
trained on one sense of the target word first, and then the 
other sense.  

 
Results 

Figure 3 displays the results for the sense-balanced 
homonyms, analogous to Figure 1 from the artificial corpus. 
In the random training order, the target homonym is evenly 
pulled between its two senses. The homonym representation 
learned by the model has an equal similarity to each sense-
pure associate. However, the next two sets of bars show the 
effect of CI that comes with sequential sense training. In 
both cases, the target homonym becomes more similar to the 
recently learned sense and less similar to the previously 
learned sense. Note that the forgetting is not completely 
catastrophic. However, this is a very profound effect on the 
final learned representation of the homonym considering 
that this is the exact same input corpus across all three 
training orders.  

 
Figure 4 plots the results for the sense-imbalanced 

homonyms from TASA. Each target homonym here has a 
bias in TASA towards one of the competing senses (e.g., 
firm is encountered in many more financial contexts in 
TASA than it is in science contexts). When trained in 
random order, the target homonym is more similar to the 
dominant sense in the corpus. The second two clusters of 

bars show the results for the sequenced training where one 
sense is learned before the other. If the dominant sense is 
also the more recently leaned sense (middle cluster of bars), 
then the target homonym becomes even more similar to the 
dominant sense and less similar to the subordinate sense. 
However, the effect of CI is seen prominently as a reversal 
in the far right cluster of bars. When the subordinate sense is 
learned after the dominant sense, the similarity of the target 
homonym favors recency over dominance. In this case, the 
target homonym actually becomes more similar to the 
recently presented subordinate sense than it is to the 
dominant sense. Again, the forgetting is not completely 
catastrophic. But the pattern is very powerful: CI produces 
an effect that makes recency overpower frequency. The 
model believes that the target homonym’s meaning is more 
similar to the subordinate sense over the dominant sense, 
simply because it was encountered more recently.   

Discussion 
The resurgence of predictive neural network models has 
already led to reconceptualization of the mechanisms 
underlying cognitive phenomena. In addition, the utility of 

these models to machine learning demonstrates the 
importance of basic cognitive science to solving applied 
problems. However, it is crucial to remember our history: CI 
is a problem that was never fully addressed in the original 
connectionist models of the 90s. We have made a clear first 
demonstration here that CI can have a strong impact on the 
semantic representations learned by neural embedding 
models such as word2vec. This is particularly important 

Figure 3. Similarity of the homonym representation from 
TASA for the sense balanced cases, trained in random 
order or with sequenced senses. The CI effect is illustrated 
in the second two clusters of bars where the target 
homonym is more similar to the recently encountered 
sense and less similar to the previously encountered sense.  
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Figure 4. Similarity of the homonym representation for the 
sense imbalanced cases. In random order, the target 
homonym is most similar to the more frequent sense (left 
bars). If the dominant sense is also more recent, the 
homonym moves closer to the dominant sense and further 
from the subordinate one (middle). However, CI produces an 
effect that reverses this trend (right bars): if the subordinate 
sense is more recently encountered, the homonym 
representation favors recency over frequency.  
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because the potential source of error goes beyond our basic 
science and into the many applications of word2vec. 
McCloskey and Cohen (1989) and Ratcliff (1990) used CI 
to demonstrate an inherent flaw with neural networks as 
theoretical models of cognition. But beyond that, neural 
embedding models such as word2vec are being used in a 
massive number of NLP and knowledge mining 
applications2, bringing the errors that come with CI along 
for the ride.  

This does beg the question: How big of a problem is CI 
really likely to be in the regular application of neural 
embedding models? Firstly, CI is still very much a 
theoretical flaw with these architectures as theories of 
cognition, in that they show forgetting and interference 
patterns that are extremely unlike biological systems. But 
the version of word2vec that we ran here was essentially 
stripped down to a core predictive neural network. The full 
word2vec algorithm includes negative sampling, frequency 
subsampling, and other machine learning tricks to speed 
learning and scale up to large amounts of text. Frequency 
subsampling adjusts the sampling of contexts of words 
inversely proportionate to their normative frequency. The 
idea is to sample word tokens roughly an even amount, and 
so the model needs to account for the Zipfian law of word 
frequencies or it will be spending far too much time on 
already well-learned frequent words, and not enough on 
rarer words further out on the Zipfian tail.  

However, the addition of frequency subsampling can 
potentially allow CI to do even more damage to the final 
semantic space than without it. The practice means that 
fewer samples are taken from high-frequency words, 
meaning that there is a greater likelihood that a single rare 
sense of the word lemma could be sampled most frequently, 
undoing previous learning for the more common sense of 
the word. Frequency subsampling assumes a single sense 
for a word, but does not take into account the fact that there 
is also a Zipfian distribution of senses within homonyms 
and polysemes, which constitute half the lexicon.  Clearly, 
more research is needed to evaluate how much variance 
there is in word2vec’s estimate of a word’s position in 
semantic space across multiple replications, and in different 
sequential orders, of a training corpus.  

With the renewed interest in neural networks, the field has 
begun to discuss architectures to insulate networks against 
CI. The most promising approaches take their organizations 
from the anatomical and functional organization of the 
brain. For example, complimentary systems theory 
(McClelland, McNaughton, & O’Reilly, 1995) posits that a 
slow neocortical processing system and faster hippocampal 
encoding system in the human brain allows deep processing 
of predictive information while avoiding problems that 
come with CI. Other architectures, such as holographic 
semantic models (Jones & Mewhort, 2007) have already 
been shown to have a near immunity to CI and are 
promising continuous learning candidates to pursue.  

                                                             
2 The original word2vec papers, published in the Proceedings of NIPS in 2013, 

have already been cited over 10,000 times.  

More recently, new algorithms that capitalize on Elastic 
Weight Consolidation (EWC) have shown great promise at 
learning new associations while insulating previously 
learned associations against forgetting (e.g., Kirkpatrick et 
al., 2017). EWC constrains the weight space of a deep 
learning network within the optimal parameter space of a 
previously learned task, essentially having the effect of a 
spring (or elastic) on already learned weights that are 
important to a previously learned task. Kirkpatrick et al. 
demonstrated that EWC networks could learn new strategies 
and associative patterns with minimal loss to previously 
learned but orthogonal associative patterns. However, EWC 
and its relatives have not yet been implemented in semantic 
neural embedding models.  
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