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ABSTRACT
Lightweight wearable cameras record video from a “first-person”
perspective, capturing the visual world of the wearer in everyday
contexts. These videos are a rich source of information about peo-
ple’s behaviors and interactions. In this paper, we investigate using
head-mounted cameras to estimate head (camera) motion, which
could be used to infer non-verbal behaviors such as head turns and
nodding in multimodal interactions. We propose Convolutional
Neural Networks (CNNs) that combine raw images and optical flow
fields to distinguish global ego-motion from moving objects in a
scene. Our results suggest that CNNs do not directly learn useful
visual features with end-to-end training from raw images alone; a
better approach is to extract optical flow explicitly and then train
CNNs to integrate flow and visual information.
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1 INTRODUCTION
To interact effectively, an embodied agent needs to know its real-
time position with respect to the rest of the physical world. Humans
and robots have various sensors to do this, from fluid chambers in
the human ear that sense balance, to accelerometers and gyroscopes
in robots and other devices. But visual information is a particularly
informative and fine-grained source of evidence, which is why
visual Simultaneous Mapping and Localization (SLAM) is well-
studied in robotics [16] and modern augmented reality systems
(e.g., Google’s ARCore [9]) often include visual odometry.

But SLAM and visual odometry assume that the surrounding
scene is mostly static, and require complex, compute-intensive
algorithms to infer pose based on reasoning about scene geom-
etry. These assumptions are often unrealistic in highly dynamic
environments. The recent availability of lightweight, wearable cam-
eras allows for collecting video from a “first-person” perspective,
capturing the visual world of the wearer in everyday interactive
contexts. Such devices include Google Glass, GoPro Hero, Oculus,
and Snapchat Spectacles, all of which are worn on the body and
“look out” at the world, naturally gathering visual information from
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Figure 1: We estimate angular head motion in egocentric
video, using both visual content and optical flow.

everyday interactions. Egocentric vision thus provides a unique
perspective of the world that is inherently human-centric, and pro-
vides fine-grained, dense information about the camera wearer’s
actions [2, 14], gaze [13], trajectory [26], interactions [1], etc.

In this paper, we investigate how to exploit egocentric vision to
infer multimodal behaviors from people wearing head-mounted
cameras, and more specifically, to estimate head motion. From a
practical perspective, inferring head motion is useful in a variety
of pervasive computing applications. Non-verbal behaviors that
induce head motion (e.g., head turns and nodding) are important
in human-human and human-robot communication [8, 18, 24, 27].
Head motion is a proxy for eye movement and attention [23], since
eye and headmovements are highly coordinated [19] and eye gaze is
usually centered in the egocentric view [3]. Finally, headmotion can
signal a person’s internal states and be used to predict influential
statements in group discussions [18], for example.

Of course, head motion can be directly measured with motion
tracking sensors, but the alternative we consider here — inferring
head motion using video from head-mounted cameras — has several
potential advantages. First, it allows multimodal behaviors (vision,
motion, etc.) to be acquired using only a camera, without the cost
of multiple sensors. Second, using video avoids the need to syn-
chronize the data streams from multiple sensors. Finally, it allows
head motion to be retroactively inferred for existing videos.

We estimate angular speed (magnitude of angular velocity) in
particular. We primarily use optical flow, which is typically cal-
culated by comparing adjacent video frames to estimate apparent
motion on a pixel-by-pixel basis. The optical flow field for a head-
mounted camera is created through a combination of the motion of
the head itself and the motion of individual objects within the scene.
If an object is stationary and at a known distance from the camera,
then estimating camera motion is straightforward based on the op-
tical flow of that object’s pixels. But in real-world, dynamic scenes,
some objects are stationary, some move in predictable patterns
(cars driving down a street), and others move highly unpredictably
(people’s hands). Meanwhile, the distances to some objects can be
easily estimated (e.g., one’s own hands are 1-3 feet away) while
others may be quite unpredictable. Finally, optical flow estimates
are much more reliable for objects with distinctive appearances,
compared to those with uniform textures or repeated patterns. The
challenge of using optical flow to estimate head motion is thus to
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separate global pixel displacements created by head movements
from local displacements created by other objects and activities in
a scene.

After a brief review of related work, we first report that the sta-
tistics of optical flow calculated on head-mounted camera video are
highly correlatedwith headmotion (Section 3), using head-mounted
motion sensors as ground truth. We then propose two approaches
to use Convolutional Neural Networks to estimate head motion:
one that operates on pre-calculated optical flow fields (Section 3.1),
and one that jointly estimates optical flow and head motion (Sec-
tion 3.2). Our experiments on a challenging dataset show that the
latter approach performs better than several baselines, by implic-
itly learning to distinguish regions with optical flow caused by
ego-motion from those caused by other motion in the scene.

2 RELATEDWORK
Estimating people’s head motion from third-person views has been
studied [17] but is fundamentally different from egocentric video [5]
in which the head does not actually appear in the frame. Visual
odometry and Simultaneous Localization andMatching (SLAM) [16]
are more related, and often used in robotics to construct maps of the
environment. These approaches assume scenes aremostly static and
require fine-grained geometric information and reasoning, which
may not be realistic for head-mounted cameras capturing inter-
actions with other people, for example. Several papers have used
optical flow features for first-person vision tasks such as activity
recognition [12, 15, 20], but do not explicitly estimate camera mo-
tion. Perhaps most related to ours is the work of Li et al. [14], who
do estimate head motion as a feature for egocentric activity recog-
nition, but their method uses fine-grained geometric information
(by computing homographies between frames).

3 ESTIMATING HEAD MOTION
For a given pair of video frames (It , It+∆t ), we wish to estimate
the angular head (camera) change in degrees per unit time — a
single scalar that is the Euclidean norm of the 3d Euler angle rates
(speeds in yaw, pitch, roll dimensions). As noted above, optical flow
is only indirect evidence of head motion, since it is created by the
motion of both the camera and the objects in the scene. If we know
which objects are stationary in the scene and their distance (depth)
from the camera, then we can use their optical flow to estimate
camera (head) rotational motion, but these are strong assumptions.
A more realistic assumption is that most of the pixels in the frame
are background and thus stationary and at uniform depth, so that
the dominant optical flow displacement vector correlates with head
motion. Figure 2(b) confirms this empirically, plotting the mode
of the distribution of optical flow speed versus the actual angular
head motion (measured by a wearable sensor) for one randomly-
chosen video from our dataset.1 A strong correlation is evident,
with Pearson correlation coefficient 0.62.

But despite the relatively strong correlation overall, the most
frequent optical flow vector is often not an accurate measure of
head speed: the dominant displacement may be created by a large

1In particular, for each pair of frames It and It+∆T where ∆T = 0.17sec, we calculated
optical flow [25], computed the magnitude of each pixel’s displacement vector, rounded
the magnitudes to integers, and selected the mode (most frequent discretized speed).
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Figure 2: Statistics of head-camera motion: (a) Distribution
of ground truth head rotation speeds, and (b) actual head
motion speed versus mode of optical flow vector lengths.
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Figure 3: Overview of network architectures: (a) VGG with
early fusion, (b) VGG with late fusion, and (c) FlowNet+.

moving foreground object (e.g., a hand), for example. Instead of
estimating head motion based only on a summary statistic of optical
flow, we hypothesize that a machine learning algorithm could learn
which flow patterns and which particular objects tend to be reli-
able indicators of head motion. In particular, we use Convolutional
Neural Networks (CNNs), the de facto standard machine learning
model in computer vision. We normalize the range of the ground
truth speed to be between 0 and 1, and train a model that predicts
(regresses) this scalar value. We consider two CNN architectures,
each having a single-node output layer with a sigmoid activation
function, but two different ways of considering optical flow infor-
mation: (1) compute optical flow in preprocessing and input an
encoding of optical flow to the CNN, or (2) input pairs of frames,
relying on the network itself to learn to infer optical flow features.

3.1 Approach 1: CNN on preprocessed flow
Our first approach computes dense optical flow between adjacent
frames and then passes them as input to a neural network. Our
base CNN is modified from VGG Configuration A [22]: we kept the
convolutional layers (the first 12 layers), but added a fully connected
layer with 128 hidden nodes and ReLU activations and an output
layer that produces a single scalar value with sigmoid activation.
We use batch normalization [10] in the convolution layers.

We tried presenting the flow and visual information to the net-
work in various ways. For pair of frames (It , It+∆t ), Flow simply
feeds the dense optical flow Ft into the base CNN, encoded as a
2-channel “image” in which the two channels correspond to the
x and y components of the displacement vectors. Flow+Visual
concatenates optical flow and the first input image of the pair,
yielding a 5-channel input, while Flow+Double Visual combines
optical flow and both input images, creating a single 8-channel
input. Finally, we tried a late-fusion approach: Flow+Visual (Late
Fusion) feeds optical flow and the image into separate streams of
the base CNN, extracts the output of the last convolution layer of
each, and passes their concatenation to the fully connected network
(Figure 3(b)).
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3.2 Approach 2: CNN on image pairs
In theory, precomputing optical flow is redundant because a pair
of images already contains the flow information, so our second
approach investigates CNNs that operates on just the image pair. A
simple way is to train a standard CNN to estimate head motion from
the visual information in a single six-channel image containing
the three RGB planes of each of the two frames, assuming that the
CNN can extract its own representation of visual change without
explicitly being trained to compute optical flow. We do this with
the base CNN in Approach 1, and call it Double Visual.

Alternatively, we can use a CNN designed to extract optical
flow. We use FlowNetS [6], a CNN to estimate the flow from a
concatenated 6-channel input image, and add several additional
layers to estimate head motion: three 3 × 3 convolution layers
(having 32, 64, and 128 filters) interspersed with two 2 × 2 max-
pooling layers, and two fully-connected layers similar to those in
Section 3.1 (one of which produces a 128-d vector with ReLU, and
another that outputs a scalar using a sigmoid). We call this modified
architecture FlowNet+ and illustrate it in Figure 3(c).

We investigated several ways of training this new model. Tune
whole FlowNet+ simply trains the network from scratch on our
training dataset. Tune last FlowNet+ initializes FlowNet weights
with those pretrained for optical flow estimation, and in train-
ing updates only the weights for the layers we added. Fine-tune
FlowNet+ beginswith the FlowNetweights, but updates all weights
(in all convolutional and fully-connected layers) during training on
our dataset for head speed detection. We expect this to allow the
whole network to be optimized for best performance on our task
and dataset, learning to integrate visual and flow information most
effectively. Finally, Tune FlowNet+ only begins with the weights
of Tune last FlowNet+, but only fine-tunes the FlowNet weights
(not those of the additional layers we added).

4 EXPERIMENTS
We tested our approach for head motion estimation using a dataset
that was collected for a psychological study of child-parent inter-
actions [4]. Parents and children sat across from each other at a
table in a lab, and played freely with colorful toys. The children
and parents wore head-mounted cameras and head position sen-
sors. The lab was draped in white, which in the original study was
designed to avoid distracting the children, but creates a scenario
that is challenging for optical flow due to a lack of distinctive vi-
sual landmarks. Moreover, data from children is likely to be more
challenging than that from adults because children’s behavior is
generally less predictable. We have three child-parent pairs with
four distinct videos for each, and use three for train and one for test.
For all experiments, we set ∆t = 0.17 seconds (5 frames) and have
24,950 image pairs (It , It+∆t ) for training and 8,797 for testing.

4.1 Evaluation Metrics
A natural evaluation metric is sum-squared error between the pre-
dicted and ground truth rotation speeds; another is to treat the
problem as a classification task by binning the ground truth into
discrete categories and reporting classification accuracy. However,
the observed distribution of head speeds is highly non-uniform,
as shown in Figure 2(a), which means that a trivial estimator that

always predicts zero head motion could achieve high accuracy un-
der these metrics. As a stricter metric, we partition pairs of frames
into ten subsets according to ground truth speed in 5° increments
up to 50° (e.g., all frames having ground truth motion in [0°,5°),
[5°,10°), etc.), compute the mean absolute error within each subset,
and average these 10 errors. We call this the weighted mean error.

4.2 Implementation and baselines
We resized video frames to 128 × 128 pixels before passing them to
our networks. During training, weminimized L2 loss (squared error)
using the Adam optimizer with its default hyper-parameters [11],
except that we divided the learning rate by a factor of 100 during
fine-tuning. We used a batch size of 32, and used undersampling
with a bin size of 5 degrees to address the class imbalance problem.

We also implemented two baseline techniques. Linear Regres-
sion fits a line to the scatter plot in Figure 2(b), and then uses
the mode of the optical flow magnitude distribution to regress
head motion.Camera Geometry estimates point correspondences
between It and It+∆t , then estimates the camera angle change
based on geometric reasoning. We follow the process in previous
work [14], and use ORB [16] for point detection and matching and
RANSAC [7] for computing homographies. Note that thismethod re-
quires knowing the intrinsic camera parameters (e.g., focal length).

4.3 Results and Discussion
Table 1 presents results of our experiments usingmean and standard
deviation of absolute error within each 5° ground truth bin, as well
as overall weighted mean error. We see that both linear regression
and camera geometry have much larger weighted mean errors (21.3
and 28.1, respectively) compared to the CNN based approaches (e.g.,
6.1 for Fine-tune FlowNet+). Interestingly, the camera geometry
baseline has very high standard deviations on absolute error; this
is likely caused by image pairs for which few distinctive feature
points are visible and a homography cannot be calculated.

For Approach 1 based on VGG, the model with only optical flow
performs better than the models with visual information (Flow+
Visual, Flow+ Double Visual), so adding visual information seems
to confuse the CNN. The simple concatenation (Flow+Visual) is
more effective than late fusion, potentially because the task needs
to integrate lower level features (including optical flow) but the
later CNN layers only see high level features [28]. Double Visual
has the highest weighted mean error. This is evidence that the base
CNN is not learning information equivalent to optical flow, which
suggests the importance of extracting optical flow explicitly.

For the FlowNet-based approaches, simply training the whole
network from scratch performs worse; this is consistent with our
hypothesis that we need to teach the network to extract the optical
flow explicitly. Training the last layers of FlowNet+ yielded a similar
performance to the Flow onlymodel for the base CNN, whichmakes
sense since this is equivalent to using Flow only. Jointly fine-tuning
FlowNet and the last layers (Fine-tune FlowNet+) gave the best
performance, suggesting that the network is finally able to use both
optical flow and visual information effectively.

These experiments suggest that optical flow is critical evidence
for head motion prediction, and that it is important to incorporate
the flow explicitly (either fed as preprocessed features or using
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Table 1: Head motion estimation error compared to ground truth, in terms of mean error ± standard deviation.

Ground truth range (number of samples) (Units: Degrees per five frames ≈ 0.17s ) weighted
mean
error0-5

(7261)
5-10
(790)

10-15
(260)

15-20
(131)

20-25
(97)

25-30
(61)

30-35
(43)

35-40
(38)

40-45
(37)

45-50
(19)

Linear Regression 2.0±1.0 2.9±1.4 8.1±1.6 13.4±1.5 18.7±1.4 23.8±1.5 28.3±1.4 33.6±1.7 38.6±1.5 43.6±1.3 21.3
Camera Geometry [14] 1.8±9.4 4.2±16.7 9.3±25.6 11.3±21.7 14.1±28.0 28.0±39.0 43.6±50.3 42.5±44.1 64.5±50.8 61.4±51.8 28.1

Flow 1.5±2.7 5.0±5.0 6.4±6.2 7.1±6.3 9.0±6.0 8.8±5.3 8.1±6.0 8.7±6.5 9.6±7.8 10.9±4.9 7.5
Flow+Visual 2.7±3.6 5.5±5.5 6.1±5.3 6.9±5.4 6.8±5.1 7.0±4.4 8.8±5.6 8.1±5.7 10.8±7.4 16.4±6.7 7.9
Flow+Visual (Late Fusion) 4.8±3.7 8.1±5.4 7.9±5.8 8.2±5.3 8.1±4.9 6.6±4.6 6.4±5.0 7.4±5.3 10.9±7.1 13.8±5.6 8.2
Flow+Double Visual 2.6±3.6 6.7±5.2 6.8±5.8 6.7±6.3 7.3±5.4 6.7±4.7 6.7±5.5 8.4±5.8 11.4±6.4 16.3±6.6 8.0
Double Visual 12.6±7.7 12.4±8.0 11.2±6.9 10.1±6.4 6.7±4.4 6.2±3.6 4.5±3.9 7.3±5.9 11.4±5.8 16.6±4.6 9.9

Tune whole FlowNet+ 23.3±1.2 18.4±1.4 13.1±1.4 7.9±1.4 2.6±1.4 2.5±1.5 7.0±1.4 12.3±1.6 17.5±1.3 22.3±1.3 12.7
Tune last FlowNet+ 3.8±4.9 5.6±6.4 7.2±6.6 7.7±6.6 7.5±6.0 7.5±5.1 6.7±4.6 7.8±4.9 7.0±5.6 11.5±7.8 7.2
Fine-tune FlowNet+ 2.4±3.8 3.7±5.0 5.0±5.7 4.8±4.6 5.9±4.5 5.4±4.4 6.8±5.1 7.8±5.0 8.2±5.2 11.2±7.2 6.1
Tune FlowNet+ only 2.1±2.4 3.1±3.5 4.7±5.2 5.5±4.5 6.2±5.0 6.3±4.6 6.5±5.1 9.2±5.8 7.8±6.1 14.1±9.7 6.5

0.20
0.15

0.10
0.05

0.00
-0.05

-0.10

(a) (b) (c)

Figure 4: (a) and (b): Results on two sample image pairs. (c): Visualization of the differences in optical flow produced by net-
works tuned and not tuned on head motion estimation. Red shows generally unreliable regions for estimating ego-motion.

transfer learning from the optical flow extractor), because neural
networks do not internally learn the flow equivalent features if we
just use end-to-end training from visual cues. Similar observations
can be found in the computer vision literature for third-person
videos, where optical flow is extracted in a preprocessing step and
found to be a critical feature [21].

Figures 4(a) and 4(b) show results generated by FlowNet+ on
two sample image pairs. Pair (a) is a case of an accurate estimation,
with error of less than 4°, while (b) is a case in which the network
over-estimated actual head motion by over 10°.

Which visual features are these networks cuing on? To help
answer this, we compared the optical flow output of Tune FlowNet+
Only with that of Tune last FlowNet+. The only difference between
these two techniques is that the former has been allowed to modify
its optical flow calculation weights to produce optical flows that
are more reliable for head motion estimation. This means that the
difference between the optical flows produced by the two networks
should reveal image regions that the network has chosen to remove
because they are thought to be unreliable. Figure 4(c) shows a
heatmap of the mean differences of optical flow magnitudes across
all 8,797 test images at each spatial position within the frame. We
see that the network often ignores optical flow near the bottom
of the image, for example, perhaps because the hands are often
located there and are particularly poor estimators of head motion.

5 CONCLUSION AND DISCUSSION
We have focused on estimating head motion in egocentric video. We
observed a high correlation between optical flow and head motion,
so we investigated several CNN-based methods for estimating head

motion based on combinations of optical flow and visual informa-
tion. We achieved the best performance by fine-tuning FlowNet+,
a network that is pre-trained for optical flow estimation. We found
that CNNs trained only from visual cues do not work as well as
when optical flow is explicitly provided, which is more evidence
that optical flow is critical to this task. We also demonstrated that
partially fine-tuning FlowNet+ could help reveal which part(s) of
the video tend to yield reliable evidence for ego-motion estimation.

A limitation of our work is that we only estimate head motion
speed instead of velocity; while speed alone is sufficient for many
applications, others may require direction as well. In future work,
our network could be extended to estimate velocity by replacing
the last layer with a triplet (yaw, pitch, roll) regression. Other fu-
ture work is to apply our head motion estimation techniques for a
particular task such as communication behavior analysis. Moreover,
we are interested in learning object-level knowledge for ego- and
non-ego motion, e.g. discovering that hands often create non-ego
motion while tables are less likely to do so.
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